
Integrating research, operations, and community engagement, a multinational and 

multidisciplinary team uses relative humidity forecasts to better manage meningitis in the Sahel.
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W ithin the meningitis belt, which stretches  
 from Ethiopia to Senegal (Lapeyssonnie 1963; 
 Greenwood 1999) as shown in red in Fig. 1, the 

endemic or background rate of Neisseria meningitidis, 
often referred to as meningococcal meningitis, is 
high enough to be considered an epidemic in the 
developed world (Molesworth et al. 2003). Against 
this background, larger epidemics occur every 7–14 
years (WHO 2012). The largest epidemic in recent 
history, from 1996 to 1997, affected 250,000 people, 
caused 25,000 deaths, and left 50,000 people disabled 
(WHO 2012).

The epidemics have a devastating impact on the 
region and its people. Untreated meningitis is fatal 
50% of the time (WHO 2012). Even with treatment, 
the fatality rate can exceed 10%, and 10%–20% of 
survivors experience long-term aftereffects including 
brain damage and hearing loss (Greenwood et al. 
1987; Moore et al. 1989). Meningitis can push a family 
into severe poverty (Colombini et al. 2009), which is 
especially significant in a region where the annual 
per capita income ranges from US$500 to US$1500 
(World Bank 2013).

Until 2010, polysaccharide vaccines were used to 
manage meningitis epidemics in the meningitis belt 
(WHO 2012). Because these vaccines are only effec-
tive for 2 years, are not protective for young children, 
and do not confer herd immunity, the polysaccharide 
vaccines were not used for preventive vaccination. 
Instead, vaccination campaigns employing the 
polysaccharide vaccines are initiated reactively in 

Fig. 1. Observed distribution of meningitis epidemics 
in Africa, compared to the location of the Kassena-
Nankana District in northern Ghana. The red 
shaded region indicates the meningitis belt (based on 
Molesworth et al. 2003). The inset box in the lower 
left shows Ghana, with the Kassena-Nankana District 
highlighted in blue.
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response to increases in the rate of disease within 
a public health district. If the number of confirmed 
cases of meningitis in a district exceeds the epidemic 
threshold defined by the World Health Organization 
(WHO 2012), the country in which the district is 
located can request emergency vaccines from the 
International Coordinating Group (ICG) on Vaccine 
Provision.

A conjugate vaccine was introduced in 2010 in 
Burkina Faso and parts of Mali and Niger (WHO 
2012) to address the limitations of the polysaccharide 
vaccine and allow preventive vaccination. The con-
jugate vaccine appears to be very effective: 2011 saw 
the lowest number of meningitis cases ever recorded 
(WHO 2012). A beltwide mass vaccination campaign 
is underway and scheduled to be completed in 2016. 
However, the conjugate vaccine is only effective against 
the most common strain of meningitis, and the viru-
lence of other strains requires continued surveillance 
and reactive management with the polysaccharide 
vaccine (S. Hugonnet 2013, personal communication).

The emergence and spread of meningococcal 
meningitis in the Sahel depends on a complex inter-
play of environmental, epidemiological, economic, 
and sociological factors. However, there are links 
to weather and climate that, if understood and 
operationalized, could be used to lessen the disease’s 
impact.

All reported meningitis epidemics in the Sahel 
have occurred during the dry season, which runs 

from December to May (Lapeyssonnie 1963). 
Greenwood et al. (1984) first documented a correla-
tion between low humidity and meningitis in the 
scientific literature (see Fig. 2). Higher humidity is 
associated with decreased meningitis transmission 
(Molesworth et al. 2003) and epidemics stop with the 
onset of the monsoon (WHO 2012). Our extensive 
interviews revealed that most people in northern 
Ghana associate meningitis with hot and dry condi-
tions and its abatement with the onset of the rains.

Several studies have highlighted the correlation of 
dusty, dry conditions and meningitis (Cheesbrough 
et al. 1995; Besancenot et al. 1997; Molesworth et al. 
2003; Sultan et al. 2005; Sultan 2005; Thomson et al. 
2006; Cuevas et al. 2007; Yaka et al. 2008; Colombini 
et al. 2009). Airborne particulates have been linked 
to meningitis cases in the Sahel, including naturally 
occurring dust [Molesworth et al. 2003; Thomson 
et al. 2006; B. Sultan et al. (2007, meeting presenta-
tion)], dust borne by strong Harmattan winds (Sultan 
et al. 2005; Greenwood 1999), and particulates from 
smoke associated with cooking (Hodgson et al. 2001a).

While it would be very helpful to use envi-
ronmental factors to predict the onset of meningitis 
epidemics, our project shied away from that for 
two key reasons. First, it is extremely unlikely that 
environmental conditions alone can be used to 
predict an epidemic, because epidemics depend on 
the confluence of a myriad of environmental, social, 
and biological factors. Further, many of these factors 
lack comprehensive data sources that can be used 
to inform predictive models. In contrast, we found 
substantial evidence that environmental conditions 
alone, in particular high relative humidity, can end 
an epidemic. This meant that predicting high relative 
humidity allowed us to immediately produce infor-
mation that public health decision makers can use 
to manage reactive vaccination campaigns. Indeed, 
members of the ICG already avoid launching vac-
cination campaigns near the end of the dry season, 
since they believe the epidemic will end naturally with 
the start of the monsoon. This highlights the second 
reason for focusing on the end of the season: it builds 
on existing practices in the public health community 
and therefore provides a clearer path for integrating 
new research findings into practice. Given limited 
supplies of vaccine, it makes sense to prioritize those 
vaccines toward dry areas where the epidemic is more 
likely to persist and away from areas where higher 
humidity contributes to the end of epidemics.

Our goal in this paper is to provide a multidisci-
plinary project-level overview of several intercon-
nected and complementary research results for 
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scientists from many disciplines. In some cases, 
while we summarize our original results here in a 
form meant for a more general scientific audience, we 
also refer to more detailed descriptions prepared, by 
members of our team, for other journals with more 
specialized audiences. In other cases, this paper is 
the first presentation of original results for which we 
intend to produce more detailed, discipline-specific 
manuscripts later.

Necessarily, the project team included a wide range 
of disciplines, including meteorologists, public health 
researchers and practitioners, as well as economists 
and medical anthropologists. It also included experts 
in the design of decision support tools and delivery 
and visualization of data. The Navrongo Health 
Research Centre (NHRC) was a key partner in this 
project. NHRC, as a part of the Ghana Ministry of 
Health, has a mandate to investigate Sahelian health 
problems and advise policy makers in Ghana and 
internationally. A foundation of the center’s capability 
is the Demographic Surveillance System, started in 
1992, which is a source of detailed, quality-controlled 
socioeconomic, demographic, epidemiological, 
health, and geographic information about northern 
Ghana. In addition to health information, NHRC 
researchers have digitized and quality-controlled 10 
years of local meteorological data at two locations 
near Navrongo.

V E R I F Y I N G  T H E  L I N K  B E T W E E N 
MENINGITIS AND HUMIDITY. Our team 
pursued three lines of evidence in order to confirm 
the long-observed connection between humidity and 
meningitis and define a relative humidity threshold 
associated with the end of meningitis transmission. 
These include i) an analysis of 10 years of weekly 
epidemiological and meteorological data taken in 
Navrongo, Ghana; ii) a differential-equation-based 
model of meningitis calibrated using 2 years of 
meteorological and epidemiological data from across 
the meningitis belt; and iii) a geospatial analysis of 
the relation of meningitis to bodies of water near 
Navrongo.

NHRC has a unique dataset of epidemiological and 
meteorological data collected for the same region and 
time period. The epidemiological data include total 
monthly counts of laboratory-confirmed meningo-
coccal meningitis in Kassena-Nankana for the 11-yr 
period from 1998 to 2008. The meteorological data 
come from a local weather station operated by the 
Ghana Meteorological Agency. The analysis of these 
data is summarized below, and more detail is available 
in Dukic et al. (2012).

Figure 3 (from Dukic et al. 2012) provides a quick 
way to view the relationships between meteorological 
variables and meningitis cases using pairwise scatter-
plots. The scatterplots reveal that large numbers of 
meningitis cases occur when the maximum tempera-
tures are high and the relative humidity is low, as 
indicated by the red boxes.

We also analyzed these data using generalized 
additive models (Hastie and Tibshirani 1990), which 
have been widely used to study air pollution and public 
health (e.g., Schwartz 1994). We found that includ-
ing weather dependence in our generalized additive 
model improves in-season prediction of monthly 
laboratory-confirmed meningitis cases by up to 40%. 
In particular, the maximum monthly temperature of 
the current month and the previous month’s relative 
humidity and carbon monoxide emissions due to fires 
showed the most influence on meningitis cases. This 
is consistent with the results of the survey of Kassena-
Nankana residents, who indicated that meningitis is 
associated with hot conditions (Hayden et al. 2013), 
and with studies that suggest exposure to smoke 
increases the risk of meningitis (Hodgson et al. 2001a).

We also performed an analysis of meningitis cases 
across the entire meningitis belt using 2 years of data 
for the districts shown in Fig. 4. The epidemiological 
data were compiled from weekly district-level reports 
from the countries in the meningitis belt for the 
period from 2007 to 2009 (C. Lingani 2010, personal 
communication; Agier et al. 2013). Meteorological 
variables came from the National Centers for Envi-
ronmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis (Kalnay 
et al. 1996). Population and georeferencing for the 
districts came from the LandScan 2008 High Resolu-
tion Global Population Data Set.

Fig. 2. A comparison of (bottom) mean maximum 
temperature (red line), (middle) absolute humidity 
(blue line), and (top) number of cases of meningitis 
(black line) in the Sahel. Figure was adapted from 
Greenwood et al. (1984).
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We modeled the transmission of meningitis using 
a differential-equation-based epidemiological model  
(Macal et al. 2012) and used these data to determine 
the coefficients of that model. [The model and our 
analysis are described in more detail in Hopson et al. 
(2014).] At the district level, the model distinguishes 
among three groups of people: those infected with 
meningitis, those susceptible to meningitis, and those 
who harbor the bacteria but do not have symptoms 
(i.e., a carriage population). It also assumes a homog-
enous mixing of people across the district and that the 
basic disease dynamics are the same across the Sahel 
(such that the model parameters apply uniformly). 
To make the model tractable, we assumed that the 
number of people infected is small compared to 
overall population, that changes in district popula-
tion are negligible, that both the susceptible and 
carriage populations are proportional to the overall 
district population, and that the disease cycle is less 
than 2 weeks.

The resulting linear finite difference equation 
relates the change in the number of new cases of men-
ingitis to the number of cases in previous weeks and 

to the overall district population, through coefficients 
that were allowed to implicitly vary in time through 
their dependence on meteorological variables. These 
coefficients were determined using cross-validated 
logistic regression, and we asked whether the predic-
tions for new cases of meningitis improved when the 
coefficients were allowed to vary with the weather. 
After testing over 90 meteorological variables with 
varying time lags, we found the most consistent 
improvement in the model’s predictions came from 
including 2-week lagged relative humidity first and 
northeasterly winds second (the latter a possible sur-
rogate for dry Harmattan winds and dust transport).

We found that a relative humidity of 40% marked 
an inflection point for the probability of a district 
exceeding the epidemic threshold (Fig. 5). Based on 
the 2 years of epidemiological data alone, the risk of a 
district experiencing an epidemic on any given week 
is only 2%. This represents background risk, an aver-
age risk that does not account for the meteorological 
inf luence on meningitis. If the relative humidity 
in the district is well below 40%, however, the risk 
of epidemic significantly exceeds the background 

risk, maximizing at 25%. 
Conversely, districts with 
a relative humidity above 
40% have a lower risk of 
exceeding the epidemic 
threshold.

Based on the relation-
ship shown in Fig. 5, we 
used a weekly average hu-
midity below 40% to differ-
entiate between a district at 
continuing risk of epidemic 
and one in which persis-
tent humidity would end 
the epidemic naturally. In 
practice, the exact value of 
the time-averaged relative 
humidity is not that im-
portant; what is important 
is the large shift from hot, 
dry conditions to cooler, 
moister condition, and the 
40% relative humidity rep-
resents a convenient way 
to mark the boundary be-
tween these two conditions.

It is interesting to note 
that relative humidity is 
a better predictor of epi-
demic risk than absolute 

Fig. 3. Pairwise comparison of monthly meteorological and epidemiological 
data for Navrongo. Each position in the matrix shows a scatterplot between 
two variables, labeled by the box on the diagonal. From the top-left corner 
the variables are as follows: cases of Neisseria meningitis, cases of Pneumococcal 
meningitis, total daily rainfall (mm), maximum temperature (°C), minimum 
temperature (°C), relative humidity at 0600 local time, relative humidity at 
1500 local time, hours of sunlight, wind speed (m s–1), percentage of dusty 
days that month, and CO2 from fires the previous month. (Note the lack of 
cases of Neisseria meningitis for high relative humidity in row 1, columns 6 and 
7.) Figure was adapted from Dukic et al. (2012).
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humidity, water content, 
or other measures of the 
absolute amount of water. 
This is consistent with the 
hypothesis that drying out 
the nasopharnyx increases 
the susceptibility to menin-
gitis (Stephens et al. 1983; 
Moore 1992; Har t and 
Cuevas 1997), since drying 
depends on the relative, not 
absolute, humidity in the 
environment.

We also investigated 
whether meningitis cases 
could be correlated with 
proximity to water bodies 
and downwind direction, 
as described in more detail 
in McCormack et al. (2013). 
This investigation used 
meningitis data from the 
Navrango Health Research 
Centre, relative humid-
ity data from 22 outdoor 
and indoor data loggers 
placed across the Kassena-Nankana District, and a 
simple advection–diffusion model driven by wind 
data extracted from the National Aeronautics and 
Space Administration (NASA) Modern-Era Ret-
rospective Analysis for Research and Applications 
(MERRA) (Rienecker et al. 2011). While there was 
no significant correlation between distance from the 
reservoir and the incidence of meningitis, there was 
a small directional effect that may have been related 
to the advection of moisture from the lake, although 
the presence of a nearby city may have confounded 
the analysis. This strategy could be generalized to 
investigate whether locally high values of relative 
humidity offer some protection from meningitis. If 
so, household-scale interventions to raise humidity, 
like moistened curtains, might provide a new way to 
decrease meningitis risk.

To better understand the meteorology at the end 
of the meningitis season, our project included a 
team that analyzed the variability of the transition 
from dry to moist conditions in the western Sahel. 
This transition is largely driven by variations in the 
northward migration of the Intertropical Front (ITF) 
(Sultan and Janicot 2003; Le Barbé et al. 2002), but 
smaller-scale convective rains can modulate this 
zonal signal and alter the timing of the shift to a 
moister environment (Omotosho et al. 2000; Ati et al. 

Fig. 4. Public health districts in Africa for which data were available between 
2007 and 2009. Black dots highlight districts that crossed the epidemic 
threshold at least once in the 2-yr period. Note that not all countries are 
uniformly represented; this is because not all data from all parts of the 
country were available.

Fig. 5. A log plot of the probability of a district cross-
ing epidemic threshold, in a version of the model 
using relative humidity and other weather variables 
(weather-conditioned risk) and without weather 
variables (unconditioned risk). The graphs of weather-
conditioned risk shows an inflection point at about 40% 
relative humidity, with the probability of epidemic 
increasing significantly for relative humidity less than 
40%.
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2002). Using NCEP reanalyses, precipitation, and 
outgoing longwave radiation, members of our team 
showed that tropical depression–type disturbances of 
the same scale as African easterly waves, equatorial 
Kelvin waves, equatorial Rossby waves, extratropi-
cal cyclones, and the Madden–Julian oscillation all 
modulate the local- and regional-scale timing of the 
ITF-driven shift from dry to moist conditions. This 
work is described in considerably more detail in Mera 
et al. (2014), which also demonstrates that these large-
scale disturbances are predictable and can influence 
cases of meningitis. In April 2009, for example, 
three different systems crossed over Kano, Nigeria. 
Together, these systems kept average weekly humidity 
above 40% and coincided with a sharp decline in the 
number of districts reporting meningitis (see Fig. 6).

UNDERSTANDING MENINGITIS IN 
NORTHERN GHANA. Investigating socioeco-
nomic perspectives provides a more complete picture 
of the challenges of managing meningitis; provides 
context for developing, using, and evaluating envi-
ronmental forecasts; and can suggest other interven-
tions that could reduce the burden of the disease. 
Social–environmental factors to consider include 
external drivers, like climate change or patterns of 
human migration; environmental factors, like smoke 
from agricultural burning or indoor cooking; differ-
ing susceptibility based on age, poverty, and access to 
health care; and adaptive capacity. Adaptive capacity, 
in turn, can depend on community knowledge of 
meningitis symptoms and transmission dynamics, 
social behaviors such as sharing rooms or utensils 
with sick people, and the ways in which traditional 
medicine and western medicine are used to respond 
to the disease.

A good way to understand these factors is via 
surveys that explore people’s knowledge, attitudes, 
and practices (KAP). Working with the NHRC, we 
focused our surveys on the Kassena-Nankana District 
(which has recently been split into two districts, 
Kassena-Nankana West and East) in northern Ghana 
(see Fig. 1). Like much of the Sahel, the district is 
primarily rural. In these rural areas, extended fami-
lies live in widely dispersed compounds surrounded 
by farmlands, like the example in Fig. 7. In the Sahel-
wide meningitis epidemics between 1996 and 1997, 
the Kassena-Nankana District recorded 1396 cases 
with 65 deaths (Hodgson et al. 2001b).

In 2010 and 2011, our team conducted quantitative 
KAP interviews throughout the Kassena-Nankana 
District. These are described and analyzed in more 
detail in Hayden et al. (2013). We surveyed 74 people 
who had contracted meningitis between 2008 and the 
present and 148 people from a control group made 
up of people who had not had meningitis after 2008. 
This case-control methodology provides a way to 
remove variables known to be related to meningitis 
(in this case age, gender, and location) and isolate 
other factors that may correlate with meningitis and 
offer opportunities for intervention.

The interviews were based on a structured ques-
tionnaire administered by NHRC researchers in 
the preferred local language of the interviewee. The 
interviews were conducted in the dry season from 
November of 2010 through May of 2011. Individual 
survey participants gave informed consent, and all 
chiefs in the district approved the survey. NHRC, 
Ghana Health Service, and NCAR reviewed and 
approved the survey through their institutional 
review boards.

Over 85% of people surveyed indicated they would 
seek medical attention from either a clinic or hospital 
once they concluded that they or one of their family 
members had contracted meningitis. However, those 
who had experience with meningitis were much more 
likely to correctly identify the early symptoms of 
meningitis. Given the efficacy of early intervention, 
these results suggest that education about the early 
symptoms of meningitis would lead people to seek 
medical help sooner, improving health outcomes.

People who took the survey knew about the 
connection between meningitis and weather. Heat 
was the most commonly cited cause for meningitis 
among both cases and controls, and 70% of both 
groups selected hot and dry periods as the time of 
year meningitis is most severe.

The different histories of cases and controls 
revealed how migration and travel can inf luence 

Fig. 6. A comparison of weekly average relative humid-
ity (red bars) and cases of meningitis (blue line) in Kano 
in Mar–Apr 2009. Figure is from Mera et al. (2014).
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meningitis risk. Many men from rural areas travel 
south during the dry season to seek farm-related 
work, essentially missing the entire meningitis 
season. However, these same men are more vulner-
able if they return to northern Ghana during the dry 
season (e.g., to attend a funeral) as they will have 
missed any reactive vaccination campaign. Similarly, 
wealthier individuals who live outside the meningitis 
belt and in areas that do not routinely vaccinate for 
meningitis show increased risk when they return to 
the belt for visits. More generally, the survey found 
that wealthier individuals are more likely to report 
not having been vaccinated.

To help quanti f y the economic impact of 
meningitis and estimate the benefits of improved 
vaccination delivery, we included an additional set of 
survey questions for households who had experienced 
meningitis. This study and its results are described 
in more detail in Akweongo et al. (2013). These 
additional survey questions covered direct medical 
costs, like drugs, laboratory tests, and consultation 
fees as well as direct nonmedical costs associated 
with treatment like transportation, food, and lodging. 
Additional questions queried indirect costs associ-
ated with the lost ability to work while experiencing 
symptoms or taking care of family members. We did 
not collect data on the additional intangible costs that 
result from pain, discomfort, and changes in quality 
of life associated with the disease.

In Kassena-Nankana, we found that a household’s 
expenditure on direct and indirect costs averaged 
US$101.70, about 3 times higher than the aver-
age income reported by those households. A study 
in Burkina Faso reported comparable household 
spending of US$90.00 (Colombini et al. 2009). In 
the Kassena-Nankana District, households without 
insurance paid approximately 4.6 times the amount 
paid by insured households seeking care at the same 
hospital. Since the poorest households were the least 
likely to have insurance, this means the financial 
burden of the disease is largest for those least able 
to absorb it.

USING HUMIDIT Y FORECASTS TO 
MANAGE MENINGITIS. Given the impact of 
meningitis in the region, the correlation between 
meningitis cases and the average relative humidity, 
and the predictability of subseasonal and meridional 
variations in humidity, our next step was to help 
public health decision makers use relative humidity 
predictions to inform their vaccination decisions. 
Current global models routinely predict relative 
humidity up to 14 days in advance; coupled with 

the observed 2-week lag between relative humidity 
and meningitis cases, this means it is possible to 
make a meningitis prediction as much as a month 
ahead of time, enough lead time to influence a vac-
cination campaign (S. Hugonnet 2013, personal 
communication).

The forecast of relative humidity begins with 
the World Meteorological Organization (WMO) 
The Observing System Research and Predictabil-
ity Experiment (THORPEX) Interactive Grand 
Global Ensemble (TIGGE; Bougeault et al. 2010), a 
real-time collection of ensemble forecasts from 10 
global numerical weather prediction centers. We 
used quantile regression (QR) (Hopson and Webster 
2010) to calibrate the probability distribution func-
tion of the relative humidity forecasts. QR is similar 
to regular regression but, instead of solving for the 
variation of the mean by minimizing the square 
error, QR finds the variation of any quantile of the 
distribution by minimizing a weighted absolute error. 
Further, the ensemble members can be used to define 
each quantile, thus avoiding assumptions about the 
form of the forecast probability distribution function. 
The result of QR is that the overall ensemble is better 
calibrated to observations, producing an improved 
forecast of the relative humidity and its variability. 
The benefits of using the full TIGGE set of ensembles 
is that, after calibration, we have a set of individual 
ensembles that represent equally likely weather sce-
narios and thus a range of humidity outcomes that 
are indicators of forecast uncertainty.

To deliver these forecasts to public health decision 
makers, we developed a prototype decision sup-
port system (Fig. 8). Using the Unidata Local Data 

Fig. 7. A household compound near Navrongo in the 
Kassena-Nankana District. Photograph is by Mary H. 
Hayden.
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Manager (Rew and Wilson 2001) and the Internet 
data delivery (Yoksas et al. 2006), we ingest forecast 
data automatically as soon as they become available 
and calibrate the forecasts using QR. Epidemio-
logical data are collected manually by public health 
officials in various countries, and shared using com-
mercial cloud services, currently Dropbox. The two 
data are combined in a visual interface called the 
Africa Decision Information System (ADIS; Fig. 8). 
This web-based interface provides up-to-date QR-
corrected relative humidity forecasts in a map view 
designed to highlight the boundary between dry and 
moist conditions. Users can step through historic and 
future humidity, zoom in and out, and look at time 
series at specific locations. ADIS also shows which 
districts are reporting meningitis alert and epidemic 
levels of meningitis with orange and red filled circles, 
respectively.

During the 2011/12 meningitis season, we par-
ticipated in a weekly teleconference led by the World 
Health Organization (WHO), which included public 

health officers who manage meningitis in Benin, 
Togo, Nigeria, Chad, and Burkina Faso. Our team 
members regularly briefed this group on the predicted 
humidity and its potential impact on meningitis, and 
that briefing was part of the knowledge used to man-
age vaccine distribution. These teleconferences were 
also linked to the regular sharing of epidemiological 
data. This is significant because the lack of reliable 
and available epidemiological data has been one of the 
biggest challenges for researchers interested in work-
ing on meningitis. The teleconference also provided a 
context in which to try out specific forecast products 
and refine our overall approach.

From the teleconferences, we learned to present 
our findings so that they could be integrated into 
existing knowledge and support existing decision 
processes. For example, public health officials were 
willing to include meteorological forecasts as one 
of several factors they would consider when mak-
ing vaccination decisions according to the existing 
protocol. Purely statistical models that predicted 

future cases were used less 
by the decision makers; 
they were reluctant to cede 
their vaccination decisions 
to a model and concerned 
about the inf luence of 
many confounding factors 
for which the models failed 
to account explicitly.

We also learned to pres-
ent information simply and 
concisely. For example, we 
modified our color table 
in the display to have a 
tight gradient around 40% 
average relative humidity 
(Fig. 8) because we found 
decision makers liked hav-
ing a straightforward rule 
of thumb: decreased risk 
of meningitis when aver-
age humidity exceeds 40%. 
While our forecasts had 
the capability of looking at 
the spread in forecast rela-
tive humidity from TIGGE 
ensemble members, none of 
the public health officials 
were interested in using 
this capability.

To ensure this work con-
tinues and grows, and to 

Fig. 8. A screenshot of the decision support system where the threshold of 
40% relative humidity is highlighted by the transition from blue to orange. 
District centers are indicated by circles, with green circles indicating no cases 
in the district that week, orange indicating a district in alert status (between 
5 and 10 cases per 10,000 people), and red circles marking districts currently 
in epidemic (more than 10 cases per 10,000 people). Black circles indicate a 
district that is not reporting data.
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ensure that it fulfills the University Corporation for 
Atmospheric Research (UCAR) goals of enhancing 
research and operational capacity in Africa (Lamptey 
et al. 2009), we signed a memorandum of understand-
ing with the African Center for Meteorological Appli-
cations for Development (ACMAD). ACMAD, which 
already produces disease-relevant weather forecasts, 
plans to incorporate these techniques and opera-
tionalize the production of these relative humidity 
forecasts for the entire meningitis belt.

To assess the potential impact of the relative 
humidity forecasts, we also estimated how many vac-
cinations could have been saved had perfect relative 
humidity forecasts predicting the natural end of the 
epidemic been used to avoid launching vaccination 
campaigns. The value of these avoided vaccinations 
can be considered in terms of cost savings that can 
be reallocated toward treating meningitis, an op-
portunity to reallocate vaccines to more at-risk 
districts, or the ability to conserve vaccine for future 
epidemics. This methodology is imperfect, since it 
does not account for errors in the humidity predic-
tion, including the negative impact of incorrectly 
anticipating high humidity and prematurely ending 
a vaccination campaign, but it does provide an upper 
bound for the value of the meteorology forecasts, 
which can be used to compare to the potential benefit 
of other interventions.

Our historic analysis used disease data from Niger, 
Burkina Faso, Benin, Togo, and Chad from 2006 
(Agier et al. 2013) until the conjugate vaccine was 
introduced in the region (roughly 2010–11). Adapting 
the approach used by Leake et al. (2002), we identi-
fied the districts that reached the epidemic threshold 
defined by WHO (WHO 2000). Then we identified the 
subset of those districts where the relative humidity 
would have naturally ended the epidemic within the 
next 3–6 weeks, according to the linearized regression 
model we developed. We did this by estimating the 
number of cases of disease that would have occurred 
in the absence of a vaccination campaign and using 
that number of cases, as well as relative humidity, to 
identify districts where the risk of epidemic fell below 
the background risk predicted without accounting for 
relative humidity. While this methodology required a 
number of assumptions about the timing and efficacy 
of vaccination campaigns, the results were relatively 
insensitive to the realistic range of those assumptions 
and more robust than simply using the 40% relative 
humidity threshold to determine where a campaign 
would have been unnecessary.

During our study period, 474 noncontiguous epi-
demics occurred. Of these, there were 18 instances 

where the risk of continuation of epidemic levels 
dropped below the background risk because of the 
actual onset of high relative humidity, as shown in 
Fig. 9. Given that the accumulated population living 
in these districts was 3 million people, this implies 
that roughly 2.6 million doses of vaccine (about 3 mil-
lion × 0.85 coverage) could have been more effectively 
positioned elsewhere around the meningitis belt if 
accurate weather forecasts had been provided and 
heeded. At an average cost of US$0.45 per vaccine, 
this translates into nearly US$1 million in savings 
over 4 years and five countries, enough to cover the 
average medical expenses due to meningitis for 11,000 
families. More importantly, those 3 million vaccines, 
properly deployed, are enough to prevent as many as 
24,000 cases of meningitis and 2,400 fatalities.

COMMUNITY-INSPIRED METEOROLOGY. 
One outcome of this project is difficult to quantify: a 
subtle change in the way the U.S. scientists involved 
think about science and generate research questions 
and methods. Part of this came from interaction 
with the project sponsor, Google.org. The original 
driver for this project was a desire to improve me-
teorological capacity in Africa, premised on the idea 
that meteorological capacity was worthwhile in its 
own right and any investment in meteorology would 
automatically protect lives and livelihood. Google.
org insisted on specific measurable impacts and 
steered us toward public health–oriented impacts. 

Fig. 9. A map showing avoidable vaccination campaign 
(red dot) between 2006 and 2011. In each of these 
places, a vaccination campaign was launched less than 
6 weeks before the onset of high relative humidity 
would have ended the epidemic naturally. Given the 
population of these districts, this accounts for about 
2.6 million vaccines at a cost of over US$1 million.
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Simultaneous conversations with several African sci-
entists emphasized the need to tie the research ques-
tion to clear societal benefit; reserve project funds for 
education, training, capacity building; and develop 
plans for sustaining the solution after funding ends 
(Lamptey et al. 2009). Finally, the collaboration with 
public health officials introduced us to the idea that 
research projects can involve community members as 
partners in defining the project, collecting data, and 
applying the results (Israel et al. 1998).

This mode of generating research has been called 
community-inspired research, in contrast to the more 
familiar mode of scientist-inspired research. While 
the general project was generated in response to com-
munity input and priorities from people throughout 
the Sahel, the core participating community was the 
community of public health practitioners who work 
in the Sahel.

From this simple difference in who asks the 
research question come considerable differences 
in the research process, and these differences are 
evident in this project. First, because community 
challenges seldom organize around traditional scien-
tific disciplines, answering those challenges requires 
the integration of several disciplines. To develop an 
economic, pragmatic, and culturally appropriate solu-
tion, this project included epidemiologists, meteo-
rologists, anthropologists, and economists. Second, 
data collection and analysis was a shared effort, with 
public health practitioners bringing epidemiological 
data and local knowledge and meteorologists con-
tributing environmental data. Third, community-
inspired research is often local or regional, and local 
knowledge is essential to the research. We saw in this 
study how local intuition provided the inspiration 
for researching the relation between humidity and 
meningitis. Another aspect of the importance of local 
knowledge showed up in the survey, where we found 
that a better understanding of early symptoms of 
meningitis might improve health outcomes. Fourth, 
community-inspired research is iterative and involves 
learning by both researchers and community mem-
bers. If we understand the participating community 
to be the community of public health practitioners 
and decision makers who work in the Sahel, then the 
weekly teleconferences to inform decision making 
about vaccine deployment represented an interactive 
and co-learning environment that refined the 
research focus and improved its applicability. Finally, 
our project collaborated with and was inspired by the 
Meningitis Environmental Risk Information Tech-
nologies (MERIT) Consortium, a nongovernmental 
organization that owned the job of fostering regular 

interaction between researchers and decision makers. 
These kinds of boundary organizations have been 
shown to enhance the success of community-inspired 
research and its usability (Dilling and Lemos 2011).

CONCLUSIONS. This project produced several 
original results: it clarified and quantified the long-
observed relationship between relative humidity and 
meningitis; revealed and documented knowledge, 
attitudes, and practices related to meningitis in rural 
Ghana; and provided one of the first estimates of 
the household costs of meningitis. It also produced 
operational results, including a rule of thumb public 
health decision makers can use in allocating vaccine 
(if the average relative humidity exceeds 40% in a dis-
trict for a few weeks, the epidemic will end naturally 
with no vaccine) and a decision-informing tool that 
leverages existing forecasts to predict future average 
relative humidity. The results also suggest several 
potential interventions that merit further investiga-
tion: use of moistened curtains to raise the humidity 
within a compound, improved education about early 
symptoms of meningitis so that people seek medical 
attention sooner, and use of cookstoves to reduce local 
and regional carbon monoxide. In fact, a follow-up 
project examines the social and economic factors 
around the adoption of cleaner-burning cookstoves 
and the change in local and regional air quality that 
would result from widespread use of these cookstoves.

This project also enhanced capacity and offered 
educational opportunity. Several students, from high 
school through graduate school, in both Africa and 
the United States, participated in this work and this 
project served as the foundation for two Ph.D. theses. 
The partnership between NCAR and African Centre 
of Meteorological Application for Development 
(ACMAD), using the decision-information tool and 
sharing the technology, data, and knowledge that sup-
ports the tool, has set the stage for ongoing collabo-
ration that spans continents and bridges the divide 
that separates research from operations. ACMAD, in 
turn, provides support and training to several African 
national meteorological and hydrological services, 
so these innovations and technologies will be spread 
across the continent. Finally, the project inspired a 
new way of thinking about and organizing research: 
community-inspired research.

Much still remains to be done. Scientifically, while 
we have identified several weather-related factors 
that correlate with meningitis (including low rela-
tive humidity, high temperature, increased carbon 
monoxide, northeasterly winds, and enhanced local 
and regional smoke), we do not have a complete-
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enough understanding of transmission dynamics 
of the disease to determine the causal links behind 
these correlations (Trotter and Greenwood 2007) or 
understand how weather might interact with other 
social or biological factors. This paper also has not 
discussed the ongoing research investigating longer-
time-scale interactions between meningitis and the 
environment, which, while harder to identify and act 
on, could provide significantly more benefit. There 
are several decision needs that guide this research, 
including (from discussion at the 2012 MERIT 
meeting) the following: What kinds of correlations 
are significant and actionable on seasonal or climate 
time scales? What kind and quality of information do 
public health officials need to help them minimize 
the impact of future outbreaks within a season or in 
future seasons: for instance, by scaling their purchase 
of vaccine or prepositioning available vaccine? How 
could changing environmental conditions, including 
climate change, change the regions that are most 
vulnerable to meningitis?

ACKNOWLEDGMENTS. This work was primar-
ily funded by Google.org. We are grateful to Madeleine 
Thomson for her invaluable guidance and for connecting 
us to the relevant international community of researchers, 
to Stéphane Hugonnet and Laurence Cibrelus for their 
endless patience in helping us understand meningitis epi-
demiology and management strategies and for organizing 
the weekly teleconferences that were critical to the success 
of the project, and to Sylwia Trzaska and Benjamin 
Lamptey for many fruitful discussions of Sahelian weather 
and climate. Finally, thanks to Anaïs Colombini for her 
guidance on cost-of-illness methodology and to Anaïs 
Colombini, Jeff Lazo, and Jennie Rice for their early work 
to frame the economic questions in the survey.

REFERENCES
Agier, L., H. Broutin, E. Bertherat, M. H. Djingarey, 

C. Lingani, W. Perea, and S. Hugonnet, 2013: Timely 
detection of bacterial meningitis epidemics at dis-
trict level: A study in three countries of the African 
meningitis belt. Trans. Roy. Soc. Trop. Med. Hyg., 107, 
30–36, doi:10.1093/trstmh/trs010.

Akweongo, P., and Coauthors, 2013: The economic 
burden of meningitis to households in Kassena-
Nankana district of northern Ghana. PLoS One, 8, 
e79880, doi:10.1371/journal.pone.0079880.

Ati, O. F., C. J. Stigter, and E. O. Oladipo, 2002: A com-
parison of methods to determine the onset of the 
growing season in northern Nigeria. Int. J. Climatol., 
22, 731–742, doi:10.1002/joc.712.

Besancenot, J. P., M. Boko, and P. C. Oke, 1997: Weather 
conditions and cerebrospinal meningitis in Benin 
(Gulf of Guinea, West Africa). Eur. J. Epidemiol., 13, 
807–815, doi:10.1023/A:1007365919013.

Bougeault, P., and Coauthors, 2010: The THORPEX 
Interactive Grand Global Ensemble. Bull. Amer. Meteor. 
Soc., 91, 1059–1072, doi:10.1175/2010BAMS2853.1.

Cheesbrough, J. S., A. P. Morse, and S. D. R. Green, 
1995: Meningococcal meningitis and carriage in 
western Zaire—A hypoendemic zone related to 
climate. Epidemiol. Infect., 114, 75–92, doi:10.1017 
/S0950268800051931.

Colombini, A., and Coauthors, 2009: Costs for house-
holds and community perception of meningitis 
epidemics in Burkina Faso. Clin. Infect. Dis., 49, 
1520–1525, doi:10.1086/644623.

Cuevas, L. E., I. Jeanne, A. Molesworth, M. Bell, E. 
Savory, S. J. Connor, and M. C. Thomson, 2007: Risk 
mapping and early warning systems for the control 
of meningitis in Africa. Vaccine, 25, A12–A17, 
doi:10.1016/j.vaccine.2007.04.034.

Dilling, L., and M. C. Lemos, 2011: Creating usable 
science: Opportunities and constraints for climate 
knowledge use and their implications for science 
policy. Global Environ. Change, 21, 680–689, 
doi:10.1016/j.gloenvcha.2010.11.006.

Dukic, V. M., and Coauthors, 2012: The role of weather 
in meningitis outbreaks in Navrongo, Ghana: A 
generalized additive modeling approach. J. Agric. 
Biol. Environ. Stat., 17, 442–460, doi:10.1007/s13253 
-012-0095-9.

Greenwood, B., 1999: Mason Lecture: Meningococcal 
meningitis in Africa. Trans. Roy. Soc. Trop. Med. Hyg., 
93, 341–353, doi:10.1016/S0035-9203(99)90106-2.

—, I. S. Blakebrough, A. K. Bradley, S. Wali, and H. C. 
Whittle, 1984: Meningococcal disease and season 
in sub-Saharan Africa. Lancet, 323, 1339–1342, 
doi:10.1016/S0140-6736(84)91830-0.

—, A. M. Greenwood, A. K. Bradley, K. Williams, 
M. Hassan-King, F. C. Sherton, R. A. Wall, and R. J. 
Hayes, 1987: Factors influencing the susceptibility 
to meningococcal disease during an epidemic in 
the Gambia, West Africa. J. Infect., 14, 167–184, 
doi:10.1016/S0163-4453(87)92052-4.

Hart, C. A., and L. E. Cuevas, 1997: Meningococcal dis-
ease in Africa. Ann. Trop. Med. Parasitol., 91, 777–785.

Hastie, T. J., and R. J. Tibshirani, 1990: Generalized 
Additive Models. Monogr. Stat. Appl. Prob., No. 43, 
CRC Press, 352 pp.

Hayden, M. H., and Coauthors, 2013: Knowledge, 
attitudes and practices related to meningitis in north-
ern Ghana. Amer. J. Trop. Med. Hyg., 89, 265–270, 
doi:10.4269/ajtmh.12-0515.

113JANUARY 2015AMERICAN METEOROLOGICAL SOCIETY |
Unauthenticated | Downloaded 09/05/22 08:03 PM UTC

http://dx.doi.org/10.1093/trstmh/trs010
http://dx.doi.org/10.1371/journal.pone.0079880
http://dx.doi.org/10.1002/joc.712
http://dx.doi.org/10.1023/A:1007365919013
http://dx.doi.org/10.1175/2010BAMS2853.1
http://dx.doi.org/10.1017/S0950268800051931
http://dx.doi.org/10.1017/S0950268800051931
http://dx.doi.org/10.1086/644623
http://dx.doi.org/10.1016/j.vaccine.2007.04.034
http://dx.doi.org/10.1016/j.gloenvcha.2010.11.006
http://dx.doi.org/10.1007/s13253-012-0095-9
http://dx.doi.org/10.1007/s13253-012-0095-9
http://dx.doi.org/10.1016/S0035-9203(99)90106-2
http://dx.doi.org/10.1016/S0140-6736(84)91830-0
http://dx.doi.org/10.1016/S0163-4453(87)92052-4
http://dx.doi.org/10.4269/ajtmh.12-0515


Hodgson, A., T. Smith, S. Gagneux, M. Adjuik, 
G. Pluschke, N. Kumasenu Mensah, F. Binka, and 
B. Genton, 2001a: Risk factors for meningococcal 
meningitis in northern Ghana. Trans. Roy. Soc. 
Trop. Med. Hyg., 95, 477–480, doi:10.1016/S0035 
-9203(01)90007-0.

—, —, —, I. Akumah, M. Adjuik, G. Pluschke, 
F. Binka, and B. Genton, 2001b: Survival and sequelae 
of meningococcal meningitis in Ghana. Int. J. 
Epidemiol., 30, 1440–1446, doi:10.1093/ije/30.6.1440.

Hopson, T. M., and P. J. Webster, 2010: A 1–10-
day ensemble forecasting scheme for the major 
river basins of Bangladesh: Forecasting severe 
f loods of 2003–07. J. Hydrometeor., 11, 618–641, 
doi:10.1175/2009JHM1006.1.

—, and Coauthors, 2014: More effective meningitis 
vaccination campaigns using weather information 
over Africa. Fifth Conf. on Environment and Health, 
Atlanta, GA, Amer. Meteor. Soc., 2.2. [Available 
online at https://ams.confex.com/ams/94Annual 
/webprogram/Paper241720.html.]

Israel, B. A., A. J. Schulz, E. A. Parker, and A. B. Becker, 
1998: Review of community-based research: Assess-
ing partnership approaches to improve public health. 
Annu. Rev. Public Health, 19, 173–202, doi:10.1146 
/annurev.publhealth.19.1.173.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-
Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 
437–471, doi:10.1175/1520-0477(1996)0772.0.CO;2.

Lamptey, B. L., and Coauthors, 2009: International rela-
tions: The UCAR Africa initiative. Bull. Amer. Meteor. 
Soc., 90, 299–303, doi:10.1175/2008BAMS2452.1.

Lapeyssonnie, L., 1963: Cerebrospinal meningitis in 
Africa. Bull. WHO, 28 (Suppl.), 1–114.

Leake, J. A. D., and Coauthors, 2002: Early detection 
and response to meningococcal disease epidemics in 
sub-Saharan Africa: Appraisal of the WHO strategy. 
Bull. WHO, 80, 342–349.

Le Barbé, L., T. Lebel, and D. Tapsoba, 2002: Rain-
fall variability in West Africa during the years 
1950–90. J. Climate, 15, 187–202, doi:10.1175/1520 
-0442(2002)0152.0.CO;2.

Macal, C. M., and Coauthors, 2012: Modeling the spread 
of community-associated MRSA. Proc. 2012 Winter 
Simulation Conf., Berlin, Germany, IEEE, 1–12, 
doi:10.1109/WSC.2012.6465271.

McCormack, K. E., and Coauthors, 2013: The relation-
ship between meningococcal meningitis and prox-
imity to bodies of water: A case study of northern 
Ghana. Fourth Conf. on Environment and Health, 
Austin, TX, Amer. Meteor. Soc., 1.3. [Available 
online at https://ams.confex.com/ams/93Annual 
/webprogram/Paper223641.html.]

Mera, R. J., A. G. Laing, and F. Semazzi, 2014: Moisture 
variability and multiscale interaction during spring 
in West Africa. Mon. Wea. Rev., 142, 3178–3198, 
doi:10.1175/MWR-D-13-00175.1.

Molesworth, A. M., Cuevas, L. E., Connor, S. J., Morse, 
A. P., and M. C. Thomson, 2003: Environmental risk 
and meningitis epidemics in Africa. Emer. Infect. 
Dis., 9, 1287–1293, doi:10.3201/eid0910.030182.

Moore, P. S., 1992: Meningococaccal meningitis in 
sub-Saharan Africa: A model for the epidemic 
process. Clin. Infect. Dis., 14, 515–525, doi:10.1093 
/clinids/14.2.515.

—, M. W. Reeves, B. Schwartz, B. G. Gellin, and 
C. V. Broome, 1989: Intercontinental spread of 
an epidemic group A Neisseria meningitidis 
strain. Lancet, 334, 260–263, doi:10.1016/S0140 
-6736(89)90439-X.

Omotosho, B., A. A. Balogun, and K. Ogunjobi, 
2000: Predicting monthly and seasonal rain-
fa l l, onset and cessation of the rainy season 
in West Africa using only surface data. Int. J. 
Climatol., 20, 865–880, doi:10.1002/1097-0088 
(20000630)20:83.0.CO;2-R.

Rew, R., and A. Wilson, 2001: The Unidata LDM sys-
tem: Recent improvements for scalability. Preprints, 
17th Int. Conf. on Interactive Information and 
Processing Systems (IIPS) for Meteorology, Ocean-
ography, and Hydrology, Albuquerque, NM, Amer. 
Meteor. Soc., 4.19. [Available online at https://
ams.confex.com/ams/annual2001/webprogram 
/Paper18406.html.]

Rienecker, M. M., and Coauthors, 2011: MERRA: 
NASA’s Modern-Era Retrospective Analysis for 
Research and Applications. J. Climate, 24, 3624–
3648, doi:10.1175/JCLI-D-11-00015.1.

Schwartz, J., 1994: Nonparametric smoothing in the 
analysis of air pollution and respiratory illness. Can. 
J. Stat., 22, 471–487, doi:10.2307/3315405.

Stephens, D. S., L. H. Hoffman, and Z. A. McGee, 1983: 
Interaction of Neisseria meningitidis with human 
nasopharyngeal mucosa: Attachment and entry into 
columnar epithelial cells. J. Infect. Dis., 148, 369–376, 
doi:10.1093/infdis/148.3.369.

Sultan, B., 2005: Influence of climate upon the menin-
gitis onset in West Africa. Med. Sci., 21, 470–471.

—, and S. Janicot, 2003: The West African mon-
soon dynamics. Part II: The preonset and onset of 
the summer monsoon. J. Climate, 16, 3407–3427, 
doi:10.1175/1520-0442(2003)0162.0.CO;2.

—, K. Labadi, J. F. Guegan, and S. Janicot, 2005: Cli-
mate drives the meningitis epidemics onset in West 
Africa. PLoS Med., 2, 43–49, doi:10.1371/journal 
.pmed.0020006.

114 JANUARY 2015|
Unauthenticated | Downloaded 09/05/22 08:03 PM UTC

http://dx.doi.org/10.1016/S0035-9203(01)90007-0
http://dx.doi.org/10.1016/S0035-9203(01)90007-0
http://dx.doi.org/10.1093/ije/30.6.1440
http://dx.doi.org/10.1175/2009JHM1006.1
https://ams.confex.com/ams/94Annual/webprogram/Paper241720.html
https://ams.confex.com/ams/94Annual/webprogram/Paper241720.html
http://dx.doi.org/10.1146/annurev.publhealth.19.1.173
http://dx.doi.org/10.1146/annurev.publhealth.19.1.173
http://dx.doi.org/10.1175/1520-0477(1996)0772.0.CO;2
http://dx.doi.org/10.1175/2008BAMS2452.1
http://dx.doi.org/10.1175/1520-0442(2002)0152.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)0152.0.CO;2
http://dx.doi.org/10.1109/WSC.2012.6465271
https://ams.confex.com/ams/93Annual/webprogram/Paper223641.html
https://ams.confex.com/ams/93Annual/webprogram/Paper223641.html
http://dx.doi.org/10.1175/MWR-D-13-00175.1
http://dx.doi.org/10.3201/eid0910.030182
http://dx.doi.org/10.1093
/clinids/14.2.515
http://dx.doi.org/10.1093
/clinids/14.2.515
http://dx.doi.org/10.1016/S0140-6736(89)90439-X
http://dx.doi.org/10.1016/S0140-6736(89)90439-X
http://dx.doi.org/10.1002/1097-0088(20000630)20:83.0.CO;2-R
http://dx.doi.org/10.1002/1097-0088(20000630)20:83.0.CO;2-R
https://ams.confex.com/ams/annual2001/webprogram/Paper18406.html
https://ams.confex.com/ams/annual2001/webprogram/Paper18406.html
https://ams.confex.com/ams/annual2001/webprogram/Paper18406.html
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.2307/3315405
http://dx.doi.org/10.1093/infdis/148.3.369
http://dx.doi.org/10.1175/1520-0442(2003)0162.0.CO;2
http://dx.doi.org/10.1371/journal.pmed.0020006
http://dx.doi.org/10.1371/journal.pmed.0020006


Thomson, M. C., A. M. Molesworth, M. H. Djingarey, 
K. R. Yameogo, F. Belanger, and L. E. Cuevas, 
2006: Potentia l of environmenta l models to 
predict meningitis epidemics in Africa. Trop. 
Med. Int. Health, 11, 781–788, doi:10.1111/j.1365 
-3156.2006.01630.x.

Trotter, C. L., and B. M. Greenwood, 2007: Menin-
gococcal carriage in the African meningitis belt. 
Lancet Infect. Dis., 7, 797–803, doi:10.1016/S1473 
-3099(07)70288-8.

World Bank, cited 2013: OP 3.10, annex C—Countries 
ranked by per capita income. [Available online at 
http://go.worldbank.org/NHHGFS35K0.]

World Health Organization, 2000: Weekly epidemio-
logical record 38. Vol. 75, WHO, 305–312.

—, 2012: Meningococcal meningitis. Fact sheet 141. 
[Available online at www.who.int/mediacentre 
/factsheets/fs141/en/.]

Yaka, P., B. Sultan, H. Broutin, S. Janicot, S. Philippon, 
and N. Fourquet, 2008: Relationships between cli-
mate and year-to-year variability in meningitis out-
breaks: A case study in Burkina Faso and Niger. Int. 
J. Health Geogr., 7, 34, doi:10.1186/1476-072X-7-34.

Yoksas, T., S. Emmerson, S. Chiswell, M. Schmidt, and J. 
Stokes, 2006: The Unidata Internet Data Distribution 
(IDD) system: A decade of development. 22nd Int. 
Conf. on Interactive Information and Processing Sys-
tems for Meteorology, Oceanography, and Hydrology, 
Atlanta, GA, Amer. Meteor. Soc., 6.4. [Available online 
at https://ams.confex.com/ams/pdfpapers/105113.pdf.]

half-page horizontal -- 6.5” x 4.5625”

      

N e w  f r o m  A m S  B o o k S !

Taken by Storm, 1938: 
A Social and Meteorological History  
of the Great New England Hurricane  
LourdeS B. AviLéS

When the Great New England Hurricane of 1938 hit the  Northeast 
unannounced, it changed everything from the landscape, to Red 
Cross and Weather Bureau protocols, to the measure of Great 
Depression relief New Englanders would receive, and the resulting 
pace of regional economic recovery. The science behind this storm 
is presented here for the first time, with new data that sheds light  
on the motivations of the Weather Bureau forecasters. This 
compelling history successfully weaves science, historical  
accounts, and social analyses to create a comprehensive  
picture of the most powerful and devastating  
hurricane to hit New England to date.  
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 “An engrossing account  
 of New England’s worst  
 natural catastrophe.” 

      — Kerry emAnueL ,  Professor of Atmospheric Science, MIT
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Find out from the authoritative source  

[ What’s a dust devil? ]  
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With over 12,000 meteorological terms,  
you’ll be able to look up definitions  
online any time, any place, anywhere. 

http://glossary.ametsoc.org/wiki

T h e  A m e r i c A n  m e T e o r o l o g i c A l  S o c i e T y

Online Glossary of Meteorology

Also available in hardcover and  
CD formats at the AMS Bookstore, 
www.ametsoc.org/amsbookstore.

Ph
ot

o:
 S

ta
n 

Ce
le

st
ia

n

116 JANUARY 2015|
Unauthenticated | Downloaded 09/05/22 08:03 PM UTC

http://glossary.a,etsoc.org/wiki



