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Between 2005 and 2015, US electricity sector emissions of nitrogen oxides and sulfur dioxide,
which harm human health and the environment, declined by two thirds, and many coal-fired power
plants became unprofitable and retired. Intense public controversy has focused on these changes,
but the literature has not identified their underlying causes. Using a new electricity sector model
of the US eastern interconnection that accurately reproduces unit operation, emissions, and
retirement, we find that electricity consumption and natural gas prices account for nearly all the
coal plant profitability declines and resulting retirements. Environmental regulations had little
effect on these outcomes.

1. Introduction

� Electricity sector emissions of nitrogen oxides (NOx) harm human health and the envi-
ronment by raising ambient concentrations of ozone and particulates. The United States began
regulating electricity sector NOx emissions in the 1970s, and emissions declined gradually and
steadily from then until around 2000, after which emissions declined sharply. Between 2000
and 2015, emissions declined at a rate four times greater than between 1990 and 2000, and
emissions in 2015 were just one fifth of 1990 emissions. Coinciding with these changes are the
tightening stringency and broadening scope of NOx emissions caps that the US Environmental
Protection Agency (EPA) administers. Likewise, emissions of other pollutants, such as sulfur
dioxide, have declined dramatically since 2000. During the same period, many coal-fired plants
became unprofitable and about one third of coal-fired plants prepared to retire.

In the political debate over electricity sector policy, two views have emerged about the cause
of the decline in electricity sector emissions and the retirement of coal-fired plants. The first
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view credits technological innovation and pro-renewables policies for reducing costs of natural
gas-fired plants and renewables and causing a shift from coal to lower-emitting sources. Many
adherents of this view favor tightening emissions caps and other regulations in light of their
benefits and lower-than-expected compliance costs. The second view is that by raising the costs
of coal-fired power plants relative to other technologies, emissions regulations have excessively
harmed coal-fired plant profits, jobs, local communities, and the reliability of electricity supply.
Some adherents of this view call for weakening regulations to end the “war on coal.” These two
views crystalized during the 2016 presidential election, and favoring the second view, the Trump
administration has begun to weaken regulations on the coal sector.

The economics literature suggests that on the margin, low natural gas prices reduce coal-fired
generation, but it does not provide direct evidence for the aggregate effects of natural gas prices
and other market forces and does not identify the causes of the retirements. Several recent articles
examine the statistical relationships among natural gas prices, wind generation, fossil fuel-fired
generation, and emissions (e.g., Cullen and Mansur, 2017; Holladay and LaRiviere, 2017; Fell
and Kaffine, 2018; Linn and Muehlenbachs, 2018; Johnsen, LaRiviere, and Wolff, forthcoming).
However, because of their reduced-form approach, these articles focus only on the short-run and
marginal effects of natural gas prices and wind generation; long-run responses may differ. The
long run includes entry and exit decisions that depend on fixed costs, whereas short-run responses
depend only on variable costs. For example, low gas prices may lead to an increase in natural
gas plant investment, potentially compounding the short-run effects on coal plant profits and
retirements. In addition, when emissions caps are binding, low natural gas prices may reduce
emissions credit prices, lowering costs for coal plants and opposing the short-run effects of gas
prices on coal plant profits. Thus, the long-run effects of market shocks may differ positively or
negatively from the short-run effects that have been the focus of the literature, leading to different
conclusions about the historical effects of these shocks.1

Moreover, although several studies have compared expected and realized costs of sulfur
dioxide emissions reductions under the Acid Rain Program (ARP) (e.g., Carlson et al., 2000;
Ellerman et al., 2000), the literature has not compared the effects of market forces with the effects
of regulation. Most electricity sector NOx emissions in the East are covered by EPA emissions
caps. When they were established, the EPA expected them to cost the sector at least $3 billion
per year (2005 dollars).2 These costs fall largely on the coal-fired fleet (Linn, 2010), implying
roughly a 10% cost increase for those units, with most of the costs incurred by the older and higher-
emitting coal-fired units. The Mercury and Air Toxics Standards (MATS) were expected to cost
substantially more than the NOx caps. Thus, environmental regulation may have substantially
reduced profitability of coal-fired units, leading to their retirement. Fowlie and Muller (2013)
analyze the costs of achieving NOx emissions caps, but they consider only the early portion of
the program and do not evaluate whether either view of the electricity sector trends is correct. We
are not aware of any ex post analysis of MATS.

In this article, we use a new computational operational and investment model of the electricity
system and quantify the effects of market shocks and emissions regulations on emissions, profits,
and retirements of coal-fired plants. We focus on the eastern United States, which accounts for
about 90% of electricity sector NOx emissions.3

1 Houser, Bordoff, and Marsters (2017) compare the effects of electricity consumption, natural gas prices, and
renewables on coal consumption between 2006 and 2016 and conclude that natural gas prices were the most important
factor, followed by electricity consumption. They do not analyze the effects of these factors on emissions or coal plant
profits. The Department of Energy (DOE) (2017) argues that natural gas prices are the most important factor explaining
coal plant retirements but provides little evidence.

2 These costs represent a large share of overall estimated costs of federal environmental regulations of the electricity
sector. Between 2003 and 2015, the EPA implemented the emissions caps in three phases (see Section 2). The agency
reports costs of complying with each phase (EPA, 1998, 2005, 2011). For the latter two phases, the costs are combined
with the costs of achieving the sulfur dioxide caps. In the main text, we use only the cost estimate from EPA (1998).

3 The United States has three major interconnections, across which there is little available transmission. Throughout
the article, East refers to the eastern interconnection, which spans the Great Plains to the East Coast (see Figure A1).
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The model includes 3500 generation units in the eastern United States and characterizes unit
construction, retirement, emissions abatement, and hourly operation. We approximate uncertainty
in consumption, uncertainty in unit availability, and constraints on unit operation by extending the
approach of Davis and Hausman (2016). The model accurately predicts observed hourly operation
and emissions and coal plant retirements. We show that a conventional economic dispatch model,
which is constructed using the same underlying data but omits these features, would overpredict
the effects of changing natural gas prices on coal-fired plants.

We model three market shocks: natural gas prices, renewables generation, and electricity
consumption. Largely because of the rise in production from shale formations, natural gas prices
in 2015 were 30% lower than the level projected in 2005. Improved wind generator performance
and subsidies caused wind generation in 2015 to be 10 times higher than had been expected.
Because of the 2008–2009 economic recession and other factors, 2015 electricity consumption
was 20% below 2005 expectations. For convenience, we refer to differences between the 2005
projections and the 2015 realized outcomes as energy market shocks, noting that policies have
contributed to them.

We model two environmental regulations: NOx emissions caps that were adopted between
2005 and 2015, and MATS.4 The emissions caps require that 2015 emissions be about half of
2005 levels. MATS requires plants to reach specific emissions standards for mercury and other
pollutants. Using 2005 projections for electricity consumption, wind generation, and fuel prices,
we estimate that without shocks, NOx abatement costs would have been about $2.9 billion per
year, which roughly agrees with ex ante EPA assessments.5 Note that we model explicitly the
compliance decisions for the NOx abatement caps, whereas we estimate MATS costs based on
observed decisions. We make this distinction because the caps applied throughout the period of
analysis, 2005 through 2015, whereas the initial compliance period of MATS falls near the end
of the period, after the market shocks occurred.

The market shocks explain 80% of the coal-fired plant retirements observed between 2005
and 2015.6 After accounting for these shocks, the emissions caps had a small effect on coal-fired
plant profits and retirements. The three shocks collectively reduced regulatory costs from $2.9
billion to $0.4 billion per year (86%) and reduced coal-fired plant profits by 89%. We find that,
after accounting for the shocks, MATS had a small effect on retirements and profits. These results
confirm the first of the two views, that factors other than environmental regulation explain most
of the decline in the profits of coal-fired plants and the resulting retirements.

4 We do not model sulfur dioxide emissions caps because emissions credit prices were close to zero in 2015,
indicating that the caps were not binding. The EPA’s Clean Power Plan, finalized in 2015, established carbon dioxide
emissions standards for fossil fuel-fired generators. Linn, Burtraw, and McCormack. (2016) see two reasons why it is
unlikely to have caused any coal plant retirements in 2015: (i) it would not have taken effect until 2022, and therefore
would not have affected power plant operational decisions in 2015, and (ii) compliance decisions for MATS were made
prior to 2015. The only plants that would retire in 2015 because of the Clean Power Plan are those for which the firm
needed to make a life-extending investment in 2015, and which would have been unprofitable under the Clean Power
Plan. Our data do not appear to contain any such plants.

5 We cannot compare our estimated costs directly with EPA estimates. Although the agency reports costs of com-
plying with each of three regulatory phases, the costs are estimated relative to different baselines, making it inappropriate
to add the three cost estimates.

6 There is some disagreement about retirements in the Energy Information Administration (EIA) and EPA data.
According to the Energy Information Administration (EIA), between 2005 and 2015, firms announced the retirements of
about 88 gigawatts (GW) of coal-fired plant capacity. Of this amount, about 20 GW did not operate in 2005, according
to EPA data. According to EPA data, about 41 gigawatts stopped operating by 2015. Much of the remaining 27 GW
of retirements in the EIA data appears to have stopped operating since 2015. Because we model market shocks and
regulation through 2015, we focus on units that stopped operating by 2015 and the percentage of retirements cited in the
text includes only those plants that stopped operating between 2005 and 2015, according to EPA data. The model predicts
low profits for the units that stop operating after 2015, indicating that many of those units would be predicted to retire
after 2015 if we model market shocks after 2015.
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The analysis implies that reducing the stringency of emissions caps would have little effect
on the profitability of existing coal-fired plants. Reducing stringency would affect emissions
directly if the emissions caps continue to bind.

Like the findings in the recent literature (e.g., Fell and Kaffine, 2018), our results confirm
the effects of natural gas prices on coal- and gas-fired generation, but in contrast to the empirical
literature that has examined natural gas prices and local air pollution (Linn and Muehlenbachs,
2018; Johnsen, LaRiviere, and Wolff, forthcoming), we show that the natural gas price shock
had little effect on NOx emissions. This demonstrates the importance of accounting for long-run
interactions between emissions caps and market shocks and offers evidence that claims about
the environmental benefits of low natural gas prices may be overstated. Our results differ from
those in the literature in that we find that the consumption shock affected the profitability of
coal-fired power plants as much as the natural gas price shock and substantially more than the
renewables generation shock. The previous literature has not considered the quantitative effects
of the consumption shock (DOE, 2017).

This article builds on the extensive literature that has used computational or structural models
of the electricity sector to address economic and environmental questions (e.g., Borenstein,
Bushnell, and Wolak, 2002; Reguant, 2014; Cullen and Reynolds, 2016). We demonstrate that
expanding the model beyond a standard economic dispatch model substantially improves model
performance, particularly regarding the substitution between coal- and natural gas-fired generation
and changes in both the intensive and extensive generation margins. Moreover, the model relies
entirely on publicly available data and is relatively simple to operate. The structure approximates
dynamics without explicitly modelling those dynamics, which allows us to model thousands of
units at an hourly time-step and to find the equilibrium in a reasonable amount of time. These
features enable a transparent analysis of the factors affecting entry and exit and relate to the
broader literature that assesses the role of environmental regulation, international trade, and other
factors on plant entry and exit and on industry dynamics (e.g., Ryan, 2012; Curtis, 2018; Shapiro
and Walker, forthcoming). As in that literature, we use the model to estimate entry costs and
compare counterfactuals to disentangle the long-run roles of regulation and market forces in
explaining observed entry and exit decisions.

Section 2 summarizes the history of regulation, describes the data, and presents summary
statistics. Section 3 outlines the computational model, section 4 describes the scenarios, section
5 presents the results, and section 6 concludes.

2. Background

� This section provides a brief history of NOx regulation and MATS, describes the data
sources, and summarizes recent electricity sector trends. We end the section by reporting several
stylized patterns of unit-level generator operation that we aim to reproduce with our model.

� Overview of electricity sector NOx regulations and MATS. Stationary and mobile
sources emit NOx when they burn fuel at high temperatures. Emissions of NOx adversely affect
health and the environment by contributing to the formation of ground-level ozone, particulate
matter, and acid deposition, among other effects. These environmental and health effects create
a role for government regulation, because otherwise, electricity generators and consumers would
not account for them when making decisions about generation and consumption. Under the
1970 Clean Air Act (CAA), the EPA established air quality standards for NOx and ground-level
ozone that protect human health and welfare. States submit plans to demonstrate their strategies
for meeting the standards. The CAA also authorizes the EPA to create emissions standards for
certain sources.

Between passage of the CAA in 1970 and the late 1980s, these regulations and state plans
proved ineffective at reducing NOx emissions. Burtraw et al. (2005) suggest that because the
regulations did not apply to most existing sources, they raised the costs of generating electricity
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from new plants relative to existing plants, causing older plants to retire more slowly than
expected—a manifestation of vintage-differentiated regulation (Stavins, 2005). In addition, laws
and regulations did little to address the problem of air transport. Indeed, the CAA created an
incentive for power generators to construct tall smokestacks, which improved local air quality but
exacerbated downwind pollution (Burtraw and Palmer, 2003).

In the 1980s, policy makers became increasingly aware of the contributions of NOx and sulfur
dioxide to acid rain. The shortfalls of initial regulations and the new information contributed to
the CAA Amendments (CAAA) in 1990. The law capped national sulfur dioxide emissions, set
maximum NOx emissions rates for most existing coal-fired boilers, and required the installation
of NOx abatement equipment at boilers in regions that did not attain the air quality standards.

The CAAA also meaningfully addressed, for the first time, the long-distance transport of
NOx emissions. Because the Northeast had some of the most severe ozone problems in the country,
the CAAA created the Ozone Transport Commission, which led to a NOx cap-and-trade program
covering large electricity and industrial sector boilers in the Northeast. Analysis conducted in the
mid-1990s, however, suggested that NOx emissions outside the region would cause many areas
in the Northeast to exceed the ozone air quality standards even after the emissions cap was fully
implemented. Based on these conclusions, the EPA created the NOx Budget Trading Program.
The program, which included 19 states and the District of Columbia, began in 2003 and capped
NOx emissions occurring each year between May and September, when ozone levels tend to be
highest. The program reduced emissions by more than half from 1990 levels.

Because of continuing concerns about achieving air quality standards, the EPA ultimately
created the Cross State Air Pollution Rule (CSAPR).7 The CSAPR program caps sulfur dioxide
and NOx emissions, with summer and annual caps on NOx. The program restricts cross-state
credit trading, and it began capping NOx emissions from 27 states and the District of Columbia in
2015. Figure A1 shows that CSAPR covers most of the eastern interconnection. Thus, over time,
the NOx emissions caps have expanded geographically and increased in stringency.

Under a process established in the 1990 CAAA, the EPA regulates emissions of air toxics.
In 2000, the EPA determined that mercury and other air toxin emissions from coal- and oil-fired
electricity generators should be regulated. The Clean Air Mercury Rule was finalized in 2005
and would have capped mercury emissions, but in 2008, the law was vacated by the courts. In
response, the EPA proposed MATS in 2011 and finalized the regulation in 2012. MATS creates
emissions limits for mercury and other air toxins from coal- and oil-fired power plants larger than
25 megawatts. Units had to meet these limits by 2015. The rule has been highly controversial and
heavily litigated, but the program has survived legal challenges.

� Data. Our main source of data is the EPA Continuous Emissions Monitoring System
(CEMS). The data set comprises nearly all emissions from fossil fuel-fired units that operate
in the eastern interconnection. Using 2005–2015 CEMS data, for each fossil fuel-fired unit, we
compile hourly fuel consumption and generation; hourly emissions of NOx, sulfur dioxide, and
carbon dioxide; and unit characteristics. Unit characteristics include the state in which the unit
is located, whether the unit has specific emissions abatement equipment, and rated capacity and
fuel type.

We complement the CEMS data with Energy Information Administration (EIA) data from
2000 through 2015. The EIA data include information about generators that collectively account
for nearly all generation from large plants. We use these data to create some of the summary
statistics reported in the next subsection. We also use the data to compute fuel prices and construct
the set of potential entering plants in the model.

7 EPA developed CSAPR after legal challenges to its previous regulation, the Clean Air Interstate Rule. This
program included three separate emissions caps: May through September NOx emissions, annual NOx emissions, and
annual sulfur dioxide emissions. Twenty-seven states and the District of Columbia participated in at least one of the three
caps.
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FIGURE 1

NATIONAL NITROGEN OXIDES AND SULFUR DIOXIDE EMISSIONS
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Note: Data are from the EPA National Emissions Inventory and include emissions from fossil fuel combustion in the
electricity sector.

� Electricity sector trends. In this subsection, we document declining NOx emissions and
changes in the electricity sector that have contributed to this decline. Figure 1 shows that national
NOx emissions declined by 75% between 1990 and 2015, with most of the decline occurring after
2000. For comparison, sulfur dioxide emissions declined by 85% during this period.

We focus on the eastern interconnection, which accounts for about 90% of national electricity
sector NOx emissions. Between 2000 and 2015, NOx emissions in the East declined by nearly
75%, mirroring the national trend. Total NOx emissions are the product of total generation and
the average rate of emissions. Therefore, reductions in total generation or average emissions
rates could explain the declining emissions. Total generation in the East increased steadily
between 2001 and 2007, at about 2% per year, then declined between 2007 and 2009, and
remained roughly flat from 2009 through 2015. The 2007–2009 decline coincides with the
macroeconomic recession, but partly because of gains in energy efficiency, electricity generation
in 2015 was slightly lower than generation in 2009. Growth in fossil fuel-fired generation, which
accounts for nearly all NOx emissions from the electricity sector, experienced a similar leveling
off after 2007. The fact that fossil fuel-fired generation was the same in 2001 and 2015 implies
that declining average emissions rates, and not total fossil generation, explain the emissions
reduction.

The decline in average emissions rate appears to be due both to a reduction in emissions rates
at individual units and to a shift to lower-emitting fuels. Coal-fired units have steadily adopted
emissions-reducing technology, such as selective catalytic reduction (SCR), which reduces emis-
sions rates by roughly 90%. As Figure 2 illustrates, generation shifts have also contributed to
the decline in emissions rates. The shift from coal- to gas-fired generation between 2000 and
2015 reduced the average emissions rate across fossil generation units. The increase in the wind
generation share, from close to zero in 2000 to 4% in 2015, further reduced emissions. In short,
changes in unit emissions rates and a shift from coal to cleaner fuels contributed to the reduction
in emissions rates—as it turns out, about equally (not shown).

The change in the capital equipment used to generate electricity is consistent with these
changes. Figure 3 shows that about 90 gigawatts (GW) of coal-fired capacity, almost one third
of the initial capacity, began retirement preparations between 2005 and 2015. Table 1 compares
the attributes of coal-fired units that retired with those that continued operating. The retiring
units tended to be smaller, older, less efficient, and less heavily utilized than the continuing units.
Figure 4 shows a large decrease in natural gas prices after 2008, relative to previous prices and to
coal and oil prices.

C© The RAND Corporation 2019.



LINN AND MCCORMACK / 7

FIGURE 2

GENERATION SHARE BY ENERGY SOURCE FOR EASTERN INTERCONNECTION, 2000–2015
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Notes: The figure plots the share of generation in total generation in the eastern interconnection, by technology. The
other category includes solar, geothermal, and a few additional technologies. Data are from EIA Form 920.

We summarize these recent developments by comparing projections of the electricity system
made in 2005 and 2015. In Figure 5, we compare projections that the EIA made in the 2005 Annual
Energy Outlook with outcomes between 2005 and 2015. Compared with the projections, 2015
natural gas prices were 25% lower, generation from renewables was 2.5 times higher, and total
electricity sector generation was 15% lower. These differences represent the unanticipated changes
in fuel prices, renewables generation, and aggregate electricity consumption that occurred during
this 10-year period. We use the term shocks to describe the difference between the observed 2015
outcomes and the 2005 projections of 2015 outcomes. Projections through 2025 suggest that
these shocks were permanent rather than temporary.

� A few stylized facts and the importance of the intensive generation margin. We observe
several patterns in unit-level emissions and generation in the CEMS data; an objective of our
model is to reproduce these patterns. If emissions rates varied greatly across fuel types but little
within fuel types, accurately predicting emissions would require only an accurate prediction
of generation shares by fuel type. However, Figure A2 illustrates substantial within-fuel-type
variation in emissions rates. For each unit in the sample, we compute the average emissions rates
of NOx, sulfur dioxide, and carbon dioxide, using hourly emissions and generation data from
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FIGURE 3

CUMULATIVE RETIREMENTS AND CAPACITY ADDITIONS IN THE EAST, 2005–2015
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Note: Cumulative retirements and capacity additions by fuel type, in gigawatts (GW), are computed from EIA Form
860 for the years 2005 through 2015. Both retirements and additions are gross amounts and not net. Retirements include
plants that announced their retirement but which may not shut down until after 2015.

TABLE 1 Summary Statistics of Eastern Coal-Fired Units

Units that Retire
between 2005 and 2015

Units that
Continue Operating

Difference
(continue - retire) t-statistic

Number of units 148 667
Capacity (MW) 164 372 208 15.28

(111) (262)
Vintage (year) 1956 1967 12 15.94

(7.27) (11.23)
Heat rate (mmBtu/MWh) 10.71 10.07 −0.64 −5.21

(1.37) (1.31)
Capacity factor 0.44 0.65 0.22 12.31

(0.20) (0.17)

Notes: Coal-fired units operating in 2005 are separated into two sets: units that retire by 2015 and units that continue
operating through 2015. Capacity (in megawatts, MW) and vintage (initial operating year) are obtained from the CEMS
unit characteristics. Heat rate and capacity factor are computed from hourly fuel input and generation from CEMS. The
right-most column reports the t-statistic from a test on the equality of the means of the variables across the two samples.

2005. The observed variation in NOx emissions rates within fuel types suggests that predicting
emissions requires an accurate prediction of unit-level generation.

A generation unit’s extensive margin refers to whether the unit operates at all, and the
intensive margin refers to how much the unit operates, conditional on its operating. Table A1
demonstrates that generation units experienced changes along both the extensive and the intensive
margins between 2005 and 2015. Between 2005 and 2008, coal units operated an average of
85% of all hours. This fell to 73% between 2009 and 2015, representing a 12-percentage point
decline along the extensive margin. Across the same two periods, natural gas-fired unit operation
increased by seven percentage points along the extensive margin. We also observe changes along
the intensive margin between 2009 and 2015. Capacity factors conditional on operation declined
by six percentage points for coal. For natural gas, conditional capacity factors increased by five
percentage points.

In short, the data indicate substantial variation over time in both the probability that units
operate and their capacity factors conditional on operating. Because a unit’s profits depend on the
correlation across hours between its generation and the equilibrium electricity price, accurately
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FIGURE 4

FUEL PRICES FOR EASTERN INTERCONNECTION, 2000–2015
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Note: Fuel prices are measured in dollars per million British thermal unit (mmBtu) and are Btu-weighted means across
plants reporting to EIA Forms 423 and 923.

modelling a unit’s hourly operation, including the extensive and intensive margins, is essential
for estimating its annual profits and emissions.

3. Computational model

� We develop a computational model that combines attributes of structural or computational
models of the electricity system, such as Bushnell, Chen, and Zaragoza-Watkins (2014) and
Reguant (2014), with attributes of the reduced-form model in Davis and Hausman (2016). The
model has limited data requirements, all data are publicly available, and simulations are relatively
easy because of the reduced-form treatment of dynamics. The model reproduces observed unit-
level operation and emissions, as well as abatement and plant retirement decisions.

� Overview of model structure. The model consists of three phases: retirements and new
construction, pollution abatement investment, and hourly operation. The hourly operation phase
is simulated over a single representative year (i.e., 8760 hours) to estimate revenues and operating
costs for each unit in the model. Next, we simulate investments in pollution abatement equipment.
Finally, we simulate entry and exit decisions (annualizing all capital costs), iterating until we
achieve convergence to ensure consistency across the phases.8 Intuitively, an increase in natural
gas prices reduces profits of coal-fired units in the operation phase, particularly for inefficient
units, and potentially causing their retirement. Because pollution abatement has high fixed costs
and low marginal operating costs, abatement equipment is installed typically at large units with
high emissions and capacity factors, making it more likely for other units to exit because of
regulation.

The structure is similar to that of planning models used in the power sector and in the
economics literature (e.g., Borenstein and Holland, 2005; Fell and Linn, 2013). This type of model
is particularly useful for comparing long-run steady states rather than transitional dynamics.

Two considerations motivate the use of this class of model. First, our main interest lies in
the long-run effects of market shocks and emissions regulation, not the transitional dynamics.
Second, although in principle we could use equilibrium electricity prices to estimate a dynamic
model in which generation units make investment and operational decisions based on current

8 In principle, we could specify the model as a constrained optimization problem, where the objective would be
to minimize total costs subject to emissions and operating constraints. However, because of the discrete nature of many
decisions in the model and the large number of units in the system, this approach is computationally infeasible.
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FIGURE 5

COMPARISON OF 2005 AND 2015 EIA PROJECTIONS
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Notes: The dashed lines show projections from the Annual Energy Outlook (AEO) for the indicated years. Solid lines
show the estimated historical price or generation level using data reported in the AEOs between 2005 and 2015. For
example, historical electricity sector generation for the year 2002 is from the 2005 AEO. Data for the projections begin
two years prior to the projection year.

and expected future state variables (e.g., Mansur, 2007), prices are not available in much of the
eastern United States, particularly in the Southeast.9 Consequently, a dynamic model would omit
much of the eastern emissions.

� Phase 1: Retirements and new construction. At the outset of the first stage, there exists
a set of generation units that have already been constructed. Each firm owns one unit. The owner

9 Cost metrics are available for the regions that do not have active markets, but these metrics are not directly
comparable with the prices that are observed in other regions (Linn and Muehlenbachs, 2018).
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of an existing unit decides whether to retire the unit or continue operating. The owner retires the
unit if expected profits in the subsequent abatement and operational stages would be negative,
where profits equal the difference between discounted revenues and costs. Costs include pollution
abatement costs, variable costs, and fixed costs. We assume perfect foresight over revenues and
costs. For simplicity, there are no retirement costs and the unit does not have any scrappage value.
Consequently, retiring is equivalent to not operating. We refer to units that are not retired as
continuing units.

There also exists a set of firms that each decide whether to construct a single new generation
unit. Each of these firms has an exogenous fuel type, heat rate, and generation capacity. The heat
rate, a standard metric in the electric power sector, is inversely related to the unit’s efficiency:
more efficient units have lower heat rates and lower fuel costs. Fixed costs are associated with
unit permitting and construction. The potential entrant decides to construct the new unit if the
expected profits are positive, where profits take into account permitting and construction costs,
as well as costs and revenue from the abatement and operation phases.

� Phase 2: Pollution abatement investments. After each firm has decided whether to con-
tinue operating its existing unit or to construct a new one, firms with continuing or entering
units must decide whether to invest in pollution abatement equipment. As in CSAPR, the NOx

regulation in the model includes both annual and summer emissions caps that cover most units in
the East. For each state with an annual or summer cap, the cap is denominated in tons of NOx. All
states implement the caps by allocating emissions credits to each firm, and the total number of
credits allocated equals the cap. Allocation to each firm depends on its unit’s historical generation,
with a certain fraction of credits set aside for entering units. Firms can trade credits with other
firms in the same state. At the end of the year, each unit’s emissions cannot exceed the number of
credits its owner holds. Units in some states face both annual and summer caps; in the model, it
is endogenous whether either or both caps are binding.10

Each generation unit can abate its emissions by reducing its generation or by installing
pollution abatement equipment. In this subsection, we focus on the decision to install SCR.11 Here,
we discuss the annual caps, assuming the summer cap is not binding (we relax this assumption in
the solution algorithm, as explained later).

Installing abatement equipment involves a fixed cost as well as an operational cost that scales
linearly with generation. For a firm that installs abatement equipment, we define the abatement
cost as K a

i , where K a
i is the annualized capital cost of the abatement equipment for unit i . The

capital costs depend on the unit’s size, age, and other attributes.12

The abatement equipment reduces the unit’s annual emissions by (ei − e′)gi , where ei is the
emissions rate (tons of NOx per megawatt hour of generation) in the absence of the abatement
equipment, e′ is the emissions rate with the abatement equipment, and gi is the unit’s annual
generation. Each unit has the same emissions rate with abatement equipment installed, and
abatement increases with the unit’s uncontrolled emissions rate (ei ) and generation (gi ).

10 The modelled emissions program has simplifications to reduce computational burden. First, whereas CSAPR
allows some emissions credit trading across states, we assume emissions credit trading within but not across states.
Second, we assume that each state’s credit market is perfectly competitive, consistent with EPA anlysis of CSAPR. In
practice, firms may have market power in credit markets, but a considerable number of cross-state trades are observed
and there is a single market-clearing emissions credit price. This implies that even though some states contain few firms
subject to the caps, these firms are subject to competition with firms located in other states. Finally, we assume no banking
of compliance credits. These assumptions may cause us to overestimate compliance costs and emissions credit prices (see
Section 6).

11 For simplicity, we model SCR but not other abatement technologies, such as low-NOx burners. This assumption
may cause us to overestimate the costs of complying with CSAPR to the extent that including other technologies would
reduce retirements or abatement costs (see Section 6).

12 Age can affect annualized abatement costs because installation costs may be higher at older units and because an
older unit has a shorter remaining lifetime over which costs are annualized (Fowlie, 2010).
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Average abatement costs are defined as the ratio of total abatement costs to abatement:

K a
i

(ei − e′) gi

+ Mae′

(ei − e′)
, (1)

where SCR operating costs are Mae′gi . Average abatement costs increase with the unit’s capital
costs and decrease with its generation level. Units with higher uncontrolled emissions rates have
lower average costs.

If a firm installs abatement equipment and reduces its emissions below its credit allocation,
the firm can sell excess credits to a firm whose emissions exceed its credit allocation. Each state’s
emissions credit market is perfectly competitive, and there is a market-clearing credit price,
τs ≥ 0, for each state, s. In each state, aggregate emissions cannot exceed the state’s emissions
cap. Because the credit market is competitive, firms install abatement equipment if their average
abatement costs do not exceed the emissions credit price. The price therefore adjusts so that in
equilibrium, credit demand equals credit supply.

The fact that gi affects average abatement costs implies that expected generation affects the
decision to install abatement equipment. Because of the assumption of perfect foresight, the firm
makes its abatement decision knowing the value of gi .

A few states have a summer emissions cap but not an annual emissions cap. In these states,
firms make abatement decisions as described above, except that they compute average abatement
costs using generation during summer months and do not operate SCR in nonsummer months
to avoid operating costs. Many states have both annual and summer caps, and there are separate
credit prices for annual and summer emissions. Firms in these states install SCR if the average
abatement costs are less than either the annual or the summer emissions price. For reasons
explained in Section 4, we use observed compliance decisions to estimate the costs of MATS.

� Phase 3: Hourly operation. The operational stage of the model represents a steady state.
We characterize hourly operation over a single year, and that year is repeated into the infinite
future. Revenues and costs are discounted back to the retirement and construction phase of the
model.

We build a unit commitment model that introduces constraints affecting a unit’s minimum
generation level and its ability to vary generation across hours. A standard unit commitment model
(e.g., Castillo and Linn, 2011; Wang and Hobbs, 2016) includes stochastic electricity demand and
unit outages, fixed costs of starting up and shutting down, and constraints on changes in generation
level across hours. Our unit commitment model is simplified for tractability, approximating a unit
commitment model’s main features. We first describe the assumptions and the market equilibrium,
and then explain how the model approximates uncertainty, fixed costs, and constraints on changing
generation across hours.

A unit’s generation costs include both fuel costs and nonfuel costs. Fuel costs equal the price
of fuel (pih), in dollars per million British thermal units (mmBtus), multiplied by the unit’s heat
rate (hi ), in mmBtus per megawatt hour (MWh) of generation. The price of fuel varies across
units because of fuel type and regional fuel price variation, and across hours because of monthly
changes in fuel prices. The nonfuel costs (ni ), in dollars per MWh, include costs of labor and
materials and vary across units but not across hours. For simplicity, the heat rates and nonfuel costs
do not depend on the level of generation, and marginal costs are given by mih = hi pih + ni + ei τ̃s .
Note that marginal costs depend on the emissions costs, ei τ̃s , where τ̃s is the sum of the annual
and summer emissions credit prices (summer credit prices equal zero in nonsummer months; e′

replaces ei for units with SCR).
Each coal and large natural gas-or oil-fired unit has a minimum generation level, g

i
, such that

if the unit is operating, it cannot operate below that level. All units have a maximum generation
level, gih . The maximum generation level varies across units and hours because of time-varying
factors such as transmission-constraints, and the minimum level varies across units.
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Total generation is exogenous to the model, which includes generation from nuclear, hydro-
electric, renewables, and fossil. Following Bushnell, Chen, and Zaragoza-Watkins (2014), among
others, we assume that generation from nuclear, hydroelectric, and renewables does not respond
to electricity prices. The lack of available data necessitates this assumption, although we note that
it is particularly reasonable for nuclear and renewables.13

Next, we turn to the market equilibrium. We assume that the market is perfectly competitive
and that firms treat the equilibrium price as being independent of the generation.14 We distinguish
among three types of hours: the peak hour, when electricity demand reaches its daily maximum;
near-peak hours, which are within six hours of the peak hour; and off-peak hours, which include
all other hours in the same day.15

At the beginning of each day, a system operator determines the peak hourly aggregate fossil
generation for the day. The operator solicits bids, where a unit’s bid includes a generation level
and minimum price above which the unit generates the specified amount. The operator ranks the
bids in order of increasing price and accepts bids to meet the forecast peak aggregate generation.
Below, we explain how the firm chooses its minimum price bid.

Firms whose bids are accepted for peak hour generation must operate their units above their
minimum levels, gih ≥ g

i
, during near-peak hours of the same day. Except for firms owning

small gas- and oil-fired units, firms whose bids are not accepted for peak hour generation cannot
generate in near-peak hours. This structure prevents units from turning off or shutting down
repeatedly during near-peak and peak hours. Because small gas- and oil-fired units are exempted
from these constraints, those units may turn on and off multiple times during a day.

Firms that generate in the peak hour submit two-part bids for generating in the near-peak
hours. If the near-peak price exceeds the firm’s marginal operating costs, the firm generates at
the maximum level, gih . If the price is below the unit’s marginal costs, the firm generates at
the minimum level, g

i
. The operator accepts bids such that total supply equals aggregate fossil

generation. The equilibrium price in near-peak hours equals the marginal costs of the highest-cost
unit that operates above its minimum level.

During near-peak hours, certain units may earn negative profits. For example, consider a
unit that operates during a peak hour. During near-peak hours, when aggregate fossil generation
is below the peak, the electricity price may lie below the marginal costs of the unit. Because
the unit cannot operate below its minimum level, the unit must operate during those hours even
if the electricity price is less than its marginal costs. However, the firm anticipates the negative
profits when it submits its bid for peak hour generation and submits a price sufficient to recover
its losses during nonpeak hours. Therefore, the firm submits a peak hour price that is greater than

13 These technologies have low marginal operating costs and therefore generate as much electricity as technologically
possible. Hydroelectric plants, on the other hand, can be dispatched to some extent subject to environmental and other
constraints. However, in the East, hydroelectric plants accounted for just 3% of power generation in 2005. The exogeneity
assumption, therefore, has little effect on the main results. For eastern nuclear units, between 2005 and 2015, we observe
little variation in annual capacity factors and few trends in monthly capacity factors, supporting the exogeneity assumption.

14 In models that allow for the possibility that US electricity markets are imperfectly competitive (e.g., Borenstein,
Bushnell, and Wolak, 2002; Mansur, 2007), firms account for the effect of their generation on equilibrium prices and
restrict their generation to increase prices. However, models now commonly assume perfect competition (e.g., Borenstein
and Holland, 2005; Blanford, Merrick, and Young, 2014; Zhou, 2016), reflecting expansion of the geographic scope of
wholesale power markets and other factors that have increased competition.
The modelling does not distinguish units at plants that are subject to cost of service regulation. In principle, operation and
retirement decisions could differ for regulated plants. For example, an owner of a regulated plant may be able to persuade
regulators to cover costs even if the plant is otherwise unprofitable. However, the model appears to predict generation
equally well for both types of units. Moreover, about 63% of the units that the model predicts retire (and that actually
retire) are subject to cost of service regulation. These results suggest that the perfect competition assumption does not
systematically affect the performance of the model in predicting behavior of regulated units.

15 The choice of six hours for nonpeak hours is somewhat arbitrary. We have recalibrated the model using a range
of assumptions on the nonpeak period for coal- and gas-fired units. The assumptions described in the text and in the
Appendix yield the best fit between observed and simulated hourly generation. However, the main conclusions about the
importance of market shocks appear to be robust to these assumptions.

C© The RAND Corporation 2019.



14 / THE RAND JOURNAL OF ECONOMICS

its marginal operating costs. Dynamic models with startup or shutdown costs, such as Bushnell,
Mansur, and Saravia (2008), similarly yield equilibria in which firms bid prices below marginal
costs in certain hours. The gap between the peak bid and marginal costs is greater for high
marginal cost firms than for low-cost firms (all else equal), because the high-cost firms must
recover greater losses incurred during near-peak hours. In equilibrium, the peak price exceeds
the marginal costs of the highest-cost unit operating. This is an equilibrium, because units whose
costs exceed the highest-cost unit that actually operates would earn negative profits across peak
and near-peak hours if they were to operate.16

During off-peak hours, the equilibrium is determined according to economic dispatch. Units
operate at gihif the equilibrium price exceeds their marginal costs, and they operate at zero
otherwise. The operator stacks the units in order of increasing marginal costs and selects the price
such that combined generation equals aggregate fossil generation.

This model differs from a standard economic dispatch model in several important ways. In
a dispatch model, a unit’s decision to operate in a particular hour does not affect its decision
to operate in other hours; there is no distinction between peak, near-peak, and off-peak hours.
Consequently, units are assumed to operate at their maximum generation level if price exceeds
marginal costs, and they do not operate at all otherwise. As demand varies across hours, units
start up and shut down such that supply equals demand, and a unit’s generation varies along the
extensive but not the intensive margin. In contrast, in the stylized unit commitment model, if
a firm operates during the peak hour, it must operate during all near-peak hours of the same
day. This constraint captures the effects on unit operation of startup and shutdown costs because
firms typically avoid incurring these costs multiple times each day.17 Importantly, in the unit
commitment model, exogenous factors (e.g., fuel prices) may affect both intensive and extensive
generation margins. In contrast, in a dispatch model, exogenous factors affect only the extensive
margin. Furthermore, in the commitment model, electricity prices during peak hours exceed
marginal costs of operating units (during other hours, price equals marginal costs of the highest-
cost unit operating above its minimum level, just as in a dispatch model). As the Appendix
explains, the maximum generation level, gih , captures transmission constraints or other factors
that may cause balkanized dispatch within the eastern interconnection. For example, transmission
constraints between regions that arise when aggregate demand is high may prevent a unit from
operating at full capacity, which would be captured by gih . Finally, as the Appendix explains, we
allow for uncertainty in unit availability and aggregate fossil fuel-fired generation.18

� Parameter assumptions and solution algorithm. Whenever possible, we use obser-
vational data to populate and parameterize the model. The set of units at the beginning of
phase 1 (retirement and new construction) includes all CEMS units that operated in 2005. Poten-
tial entrants include all units that actually entered between 2005 and 2015 and units that entered
construction planning prior to 2005 but did not actually enter the market. This allows us to use

16 A firm’s peak-hour bid is determined by the losses incurred during the near-peak hours. In turn, the near-peak
losses depend on the firm’s exogenous variable costs and the equilibrium price, which it takes as exogenous. For a
near-peak hour, the equilibrium price is determined by the marginal costs of the highest-cost unit that operates above its
minimum capacity. That is, the bid of a firm that operates at its minimum generation level does not affect the equilibrium
price because that firm is inframarginal. Because the price rather than the firm’s bid determines the firm’s losses, those
losses do not depend on its bid during the near-peak hour. Consequently, the near-peak bid does not affect profits, making
the peak bid unique.

17 In the simulations, many natural gas- or oil-fired units can start up or shut down multiple times within the peak
and near-peak periods. We have also considered versions of the model that prevent more than one startup and shutdown
for each unit and day, which yield similar results to those reported here.

18 We incorporate two types of uncertainty. First, units may be unavailable because of unplanned outages or
maintenance. We include an exogenous probability that the unit is unavailable for a particular day. Second, the system
operator introduces a reserve requirement to account for the fact that peak aggregate fossil generation is forecasted with
error. We introduce a reserve margin, r > 0. The system operator accepts bids for peak-hour generation such that total
generation of accepted bids is equal to 1 + r multiplied by forecast peak aggregate fossil generation.
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the heat rate and capacity of actual and planned units to characterize the potential entrants in the
model. For the abatement phase, we estimate capital costs of installing SCR from EPA (2010). In
the operational phase, fuel prices are constructed from EIA data, and aggregate fossil generation
is computed as the sum of observed generation across all fossil fuel-fired units. Profits in the
operational phase are discounted to 2005 using a 10% discount rate (this discount rate is typical
for the industry, and results are similar using alternative discount rates). The Appendix describes
the methodology for constructing unit attributes and other parameter values, including nonfuel
costs and transmission constraints.

Turning to the solution algorithm, we solve the model iteratively, beginning with the operation
phase and an initial guess of the equilibrium emissions credit prices, and assuming that there are
no retirements. The operation stage includes a single year to represent the steady state, and it can
be solved each day of the year by first determining which units operate in the peak period; only
those units operate during the near-peak hours of the same day. In each hour, the equilibrium
price is determined such that supply equals aggregate generation and is subject to all operating
constraints of the units.

In the abatement phase, given an assumed emissions credit price, units install abatement
equipment if the unit’s average abatement cost is no greater than the credit price. The credit price
is increased from zero until the emissions cap is satisfied. Capital investments are annualized and
subtracted from each unit’s operating profits computed in the operation stage.

If profits of all units are positive but electricity prices are not high enough to induce entry,
the equilibrium is determined. If at least one unit has negative profits, the unit with the lowest
profits is assumed to retire (or not to enter), and the model is resimulated using the smaller set of
generation units and the credit prices estimated from the previous iteration.19

� Validation of the abatement and hourly operation stages and comparison with dispatch
model. Section 5 validates the full model by comparing predicted and observed coal-fired plant
retirement decisions. In this section, we focus on validating the abatement and operational phases
of the model by comparing model outputs with observed behavior. Although the scenarios
described in the next section use 2015 as the representative year, in this subsection, we simulate
the operation stage for each year between 2005 and 2015. This allows us to compare predicted
and observed outcomes across the range of fuel price, demand, and renewables conditions that
occurred during these years.

To validate the abatement cost estimates, we compare estimated abatement costs of units
that do and do not install SCR, expecting the installers to have lower costs. Figure 6 uses data and
assumptions from the EPA to plot the estimated density functions of average abatement costs for
units that do not have SCR in 2005, separating units that install SCR between 2005 and 2015 from
units that do not. Abatement costs, in dollars per ton of NOx, are defined as in equation (1). The
figure shows that units with higher average abatement costs were less likely to install SCR. If other
factors predict SCR installation, or if there is a nonlinear relationship between annualized capital
costs and installation, we could improve the model by incorporating these other factors in the
installation decision. We find that, conditional on average abatement costs, other unit attributes,
such as age, do not predict SCR installation.20 Unobserved factors, such as compliance with local
regulations and EPA enforcement of New Source Review, may explain SCR installation. These

19 The exit rule does not account for the fact that one unit’s exit can affect another unit’s profits, raising the possibility
of multiple equilibria if we accounted for strategic behavior in exit. We have considered other exit rules, such as randomly
choosing a unit with negative profits or choosing the unit whose profits increase most from another unit’s exit (this is
feasible only in simulations that include a small number of units with negative profits). Because these alternatives yield
similar results, we use the simpler exit rule.

20 Fowlie (2010) finds that traditionally regulated units are more likely to install SCR. However, after using more
recent data and conditioning on estimated costs, we do not find a strong correlation between SCR adoption and regulatory
status. Therefore, we do not distinguish between regulated and unregulated plants in the abatement phase.
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FIGURE 6

ESTIMATED DENSITY FUNCTIONS OF ANNUALIZED AVERAGE ABATEMENT COSTS FOR SELECTIVE
CATALYTIC REDUCTION
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Notes: For each coal-fired unit operating in 2005 that does not have SCR, capital costs of installing SCR are computed
using the unit’s rated capacity, heat rate, and observed emissions rate and cost assumptions from the EPA Integrated
Planning Model. Capital costs are annualized using the unit’s estimated remaining lifetime. Emissions abatement is equal
to the product of the unit’s simulated 2005 generation and the change in emissions rate from installing SCR. Average
abatement costs, in dollars per ton of NOx emissions, equal the annualized capital costs divided by emissions abatement.
The figure plots the estimated density function of average abatement costs separately for units that do and do not install
SCR between 2005 and 2015.

factors are exogenous to the model. Below, we discuss estimated abatement costs in context of
the simulated and observed credit prices.

Turning to the performance of the hourly operation phase, we compare observed generation
and emissions with levels predicted by the unit commitment model as well as the levels predicted
by an economic dispatch model. The dispatch model uses the same data as the unit commitment
model and does not include the constraints on minimum generation levels or distinguish among
peak, near-peak, and off-peak hours.

We compare the simulated outcomes using the commitment and dispatch models for each
year between 2005 and 2015. For selected years, Panel A of Table 2 shows that the percentage of
coal-fired generation predicted by the unit commitment model matches the observed percentages
more closely than do the predictions of the dispatch model (results for other years are available on
request; percentage differences between the simulated and the observed emissions are reported
in curly brackets). Across all years between 2005 and 2015, the mean absolute deviation is about
3 percentage points for the unit commitment model and 20 percentage points for the dispatch
model. The dispatch model overpredicts cross-year changes in the coal-fired percentage. For
example, the dispatch model predicts a 36.8 percentage point reduction between 2005 and 2015,
whereas the observed change was 21.9 percentage points. This suggests that the dispatch model
would overstate the effects of the natural gas shock on coal plant profits and retirements. By
comparison, the commitment model predicts a 21.9 percentage point decrease.

Panels B through D in Table 2 compare observed and simulated aggregate emissions for
selected years. The table shows that the unit commitment model outperforms the dispatch model
in every year, and typically by a wide margin.

The unit commitment model also outperforms the dispatch model when comparing unit-level
outcomes. Above, we noted the observed variation over time along the extensive and intensive
margins. By construction, the dispatch model predicts capacity factors, conditional on operation,
equal to one. In contrast, the unit commitment model predicts capacity factors between zero and
one because of the minimum and maximum generation constraints. Table 3 shows that the unit
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TABLE 2 Observed and Simulated Generation and Emissions

Year Observed Dispatch Model Simulation Unit Commitment Model Simulation

Panel A: Percentage of coal in total generation

2005 79.9 96.9 81.3
{21.28} {1.75}

2008 80.2 97.7 82.2
{21.87} {2.57}

2012 62.9 63.1 62.2
{0.37} −{1.11}

2015 58.0 60.1 59.4
{3.69} {2.38}

Panel B: Nitrogen oxides emissions (million tons)

2005 2.94 3.42 2.97
{16.28} {1.11}

2008 2.39 2.83 2.46
{18.39} {2.66}

2012 1.28 1.39 1.35
{9.06} {5.97}

2015 1.00 1.09 1.08
{8.97} {7.53}

Panel C: Sulfur dioxide emissions (million tons)

2005 9.05 10.70 9.31
{18.16} {2.82}

2008 6.65 8.26 7.01
{24.08} {5.39}

2012 2.75 2.99 3.00
{8.70} {9.06}

2015 1.79 1.98 1.97
{10.43} {9.67}

Panel D: Carbon dioxide emissions (million tons)

2005 1923 2092 1928
{8.75} {0.22}

2008 1872 2055 1875
{9.74} {0.12}

2012 1630 1637 1626
{0.43} −{0.26}

2015 1521 1517 1514
−{0.30} −{0.48}

Notes: The first column reports the observed percentage of total fossil fuel-fired generation that is from coal-fired
generation in Panel A and the emissions in millions of tons in Panels B–D. The right two columns report the corresponding
simulated outcomes using the dispatch and commitment versions of the model. The percentage difference between
simulated and observed values is reported in curly brackets.

commitment model approximates the observed changes along the intensive margin for both coal-
and natural gas-fired units and across time periods.

Regarding the extensive margin, each annual simulation includes units that are observed
to generate electricity in that year. Therefore, the unit commitment model would ideally predict
positive generation for each unit in each year. In practice, Table 4 shows that the percentages of
units predicted to have zero generation are close to zero, whereas the dispatch model predicts
zero generation for about 5% of units on average.
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TABLE 3 Observed and Simulated Capacity Factors

Mean Capacity Factor Conditional on Positive Generation

2005 2015

Observed
Simulation Using
Dispatch Model

Simulation Using
Unit Commitment

Model Observed
Simulation Using
Dispatch Model

Simulation Using
Unit Commitment

Model

Coal 0.78 1.00 0.79 0.70 1.00 0.78
Gas 0.70 1.00 0.66 0.89 1.00 0.75

Note: For the years indicated in the column headings and fuel types indicated in the row headings, the table reports the
observed and simulated mean capacity factors conditional on positive generation, where means are weighted by the unit’s
rated capacity.

TABLE 4 Percentage of Units with Zero Annual Generation

Year Simulation Using Dispatch Model Simulation Using Unit Commitment Model

2005 1.80 0.00
2008 4.92 0.06
2012 7.52 0.01
2015 5.13 0.05

Note: For the versions of the model indicated in the column headings and years indicated in the row headings, the table
reports the share of units that have zero simulated annual generation.

Figure 7 further confirms the superiority of the commitment model by plotting simulated
against observed annual generation for the two versions of the model. The predicted values for
the commitment model are more similar to observed values than they are for the dispatch model.
If we regress simulated on observed generation, the R2 is typically about 0.9 for the commitment
model and 0.7 for the dispatch model. Consistent with the results in Table 4, Figure 7 shows that
the dispatch model is more likely to predict zero generation than is the unit commitment model.

We assume that the transmission constraints are the same across counterfactuals. These
assumptions could bias the simulation results if the operation constraints do not accurately
approximate transmission congestion in the baseline scenario, or if transmission constraints would
affect units differentially across the counterfactuals considered. Figures A5 through A7 compare
predicted and observed outcomes at more disaggregated levels than in Figure 7, illustrating results
by North American Electric Reliability Corporation (NERC) region and fuel type. Overall, the
model predicts outcomes accurately for these subsets of generation units, and across the range of
operating conditions considered in the counterfactuals. The agreement between observation and
data supports the validity of our approach to approximating transmission constraints.

Thus, over the range of conditions observed between 2005 and 2015, when fuel prices,
renewables, and consumption varied considerably, the unit commitment reproduces outcomes
more accurately than does the dispatch model. Note that to avoid overfitting the model, we
estimate the model parameters using observations across the entire 2005–2015 period rather than
estimating the parameters during subperiods. The fact that we use the entire period to estimate
the parameters, and that the model performs well in all subperiods, indicates that the model can
accurately predict outcomes across the range of scenarios described next.

4. Scenarios

� We use the model to quantify the costs of reducing NOx emissions and to estimate the effects
of market shocks on those costs, as well as on coal plant profits and retirements. Each scenario
includes a set of initial generation units that were operating in the year 2005. The scenarios use
the year 2015 to represent the steady state and differ in their projected fuel prices, electricity
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FIGURE 7

SIMULATED VERSUS OBSERVED ANNUAL UNIT GENERATION (MILLION MWH) [Color figure can be
viewed at wileyonlinelibrary.com]
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Notes: Two versions of the hourly operation model, dispatch and stylized unit commitment, are run using fuel prices
and aggregate fossil fuel-fired generation for the years 2005, 2010, and 2015. In the dispatch version, units are dispatched
each hour according to marginal costs. The unit commitment model includes stochastic unit availability, a reserve margin,
minimum and maximum generation levels, and daily unit commitment. Panels A, C, and E plot simulated against observed
generation for each unit, using the dispatch version. Panels B, D, and F plot simulated against observed generation for
each unit, using the commitment version.

consumption, renewables generation, and environmental regulation. This section defines the
scenarios that we analyze in the next section.

� Baseline. The year 2005 represents the initial unit construction-retirement and abatement
stages of the model. The year 2005 is chosen for reasons of data availability and regulatory history.
As the geographic extent of emissions regulation expanded in the 2000s, so too did the coverage
of the CEMS data. By 2005, CEMS included nearly all units that were eventually covered by the
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end of our data period, 2015. The year 2005 also represents the second year of the NOx Budget
Trading Program, which was the first time the regional cap-and-trade system expanded beyond
the Northeast. Therefore, the 2005–2015 period contains most of the NOx emissions reductions
that the emissions programs have required.

Recall that a planning-style model, such as this one, is useful for comparing steady states. The
operating phase consists of a single year of operating conditions, which is repeated to the infinite
future and discounted to 2005. For several reasons, we use the most recent year for which we have
data, 2015, to characterize the steady-state operating conditions. First, 2015 is the first year for
which the CSAPR emissions caps applied, and these require deeper and geographically broader
emissions reductions than the previous NOx emissions caps. Second, the 2015 data allow us to
compare steady states that use the observed outcomes with steady states using 2005 projections
of 2015 outcomes. By comparing the steady states, we can evaluate the effects of the differences
between projected and realized outcomes, which we refer to as shocks. Alternatively, we could
define shocks using EIA’s Annual Energy Outlook (AEO) projections from 2005 and 2015 and
simulate the hourly phase for each year through 2030, discounting back to 2005; doing so does
not affect the main conclusions.21

The baseline fuel prices and consumption growth are based on EIA projections from the 2005
AEO. For the eastern interconnection, the 2005 AEO projected a 23% increase in consumption,
a 15% increase in wind generation, and a 19% decrease in the real price of natural gas between
2005 and 2015.

� Consumption, wind, and natural gas price shocks. We define four scenarios around
the consumption, wind, and natural gas price shocks. Year 2015 consumption in the eastern
interconnection turned out to be 9% lower than 2005 consumption, versus the 23% increase
between 2005 and 2015 that the EIA projected. The first scenario uses the observed electricity
consumption growth rather than the projected level from the baseline scenario, which amounts
to assuming that firms correctly anticipate the shock in 2005. Note that this scenario uses the
projected wind and nonrenewables generation to compute aggregate fossil generation. We expect
that lower electricity consumption reduces equilibrium electricity prices and generation of all
units, reducing emissions and potentially causing the retirement of high-cost units.

The second shock is for wind generation. In 2005, the EIA projected a 15% increase in
wind generation from the eastern interconnection between 2005 and 2015, but wind generation
in 2015 was 16 times higher than it was in 2005. The second scenario uses the observed 2015
wind generation rather than the level of wind generation the EIA had projected in 2005. We do
not include solar power generation, which has accounted for a negligible share of generation in
the East, even in 2015. This shock reduces electricity prices and has the largest negative effect on
generation from high-cost units that operate during hours when wind generation is high.

The third shock is that natural gas prices turned out to be lower than the EIA projected.
This scenario uses observed 2015 fuel prices rather than the projected prices from the baseline
scenario, replacing the 19% projected price decrease with the observed 50% price decrease. The
fuel price shock includes the effects of shale gas as well as other demand and supply shocks in
natural gas markets. The fuel price shock reduces generation costs for gas-fired units.

The first three scenarios treat each of the three shocks individually, and the fourth scenario
has all three shocks simultaneously. Because three shocks occur simultaneously in the fourth
scenario, this scenario illustrates their combined long-run effects. These scenarios allow us to

21 The alternative approach also includes perfect foresight of the shocks. The baseline uses the EIA forecasts from
the AEO 2005 for each year from 2005 through 2030. The hourly operational model is simulated each year and profits
are discounted back to 2005. For the other scenarios, we use the observed values of the variables between 2005 and 2015,
and the AEO 2015 projections for years 2005 through 2030. For example, in the wind scenario, we use observed wind
generation in the eastern interconnection for the years 2005 through 2015, and the AEO 2015 forecast of wind generation
for 2015 through 2030. In other words, we assume that the firm has perfect foresight for 2005 through 2015 and that the
AEO 2015 correctly forecasts outcomes after 2015.
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quantify the effects of each shock on emissions and generator profits in a hypothetical situation
that does not include environmental regulations.

� Emissons caps and MATS. We define four regulation scenarios. The first uses parameter
assumptions from the baseline scenario and the 2015 CSAPR emissions caps. After simulating
this scenario, we check that the summer emissions caps are not exceeded; if they are, we model
the annual and summer caps jointly.22 Comparing this scenario with the baseline allows us to
estimate the expected costs of the NOx regulations, given the EIA projections made in the 2005
AEO. This scenario corresponds to an analysis the EPA might have made had it created the 2015
CSAPR caps in 2005, without the intermediate caps under the preceding programs.

The second regulation scenario includes the 2015 CSAPR emissions caps and the consump-
tion shock. The third regulation scenario includes CSAPR as well as the consumption, wind
generation, and fuel price shocks. Comparing the three CSAPR scenarios allows us to quantify
the effects of the shocks on the costs of CSAPR as well as on generator profits.

The final scenario includes MATS in addition to the three shocks and CSAPR. The fact
that MATS was implemented after the market shocks simplifies the modelling, because we can
model MATS using observed compliance decisions. We estimate abatement costs from the same
EPA sources that we use for the SCR costs. This approach allows us to characterize the effects of
MATS on emissions, profits, and retirements conditional on the market shocks and CSAPR.23

5. Results

� In this section, we first compare the baseline scenario with the scenarios that include shocks
to electricity consumption, wind generation, and fuel prices. Finally, we consider the scenarios
that include environmental regulations.

� Consumption, wind, and natural gas price shocks. The first column of Table 5 reports
summary statistics from the baseline scenario. Recall that the baseline scenario uses EIA projec-
tions made in 2005 of fuel prices, renewables generation, and electricity consumption. Panel A
shows the generation percentages by fuel type, with coal accounting for 74% of total generation
and natural gas for 22% (oil accounts for the remaining 4%).

Column 2 in Table 5 reports the simulation results if we use the observed consumption rather
than the projected consumption. The consumption shock has little effect on percentages of coal
and natural gas in total generation and reduces capacity factors (Panel B) and profits (Panel C)
for both natural gas- and coal-fired generation. Panel D shows that the consumption shock causes
1.1 GW of coal-fired plant retirements. Panel E indicates that it reduces NOx emissions by 34%.

The wind scenario in column 3 uses the observed wind generation level, which was higher
than the EIA projection. The increase in wind generation reduces capacity factors of both coal- and
natural gas-fired units (Panel B) and by a larger percentage for natural gas than coal; consequently,
the share of natural gas in total generation decreases slightly (Panel A). Wind generation has a
larger effect on coal-fired plant profits than on natural gas-fired plant profits (Panel C) and reduces
emissions by about 6%.

Column 4 shows that the lower natural gas prices, relative to projected prices, cause a
substantial shift from coal- to natural gas-fired generation (Panel A). Because natural gas-fired

22 We find no cases in which a state’s summer cap is binding and the annual cap is not binding. Because SCR
constitutes a lumpy investment, a single unit adding SCR or exiting could cause emissions to fall below the cap. In those
cases, we assume that the SCR units are operated sufficiently often (i.e., less than 100% of hours) such that emissions
exactly equal the cap. This is consistent with the observation that many units turned off SCR when natural gas prices and
consumption growth fell in the early 2010s.

23 In MATS, the EPA assesses compliance based on the emissions controls technologies installed, rather than by
directly monitoring emissions. Our assumption that any controls installed after 2011 (when MATS was proposed) were
installed because of MATS may cause us to overestimate the costs of MATS if they were installed because of state-level
regulations.
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TABLE 5 Effects of Shocks to Demand, Wind Generation, and Fuel Prices

(1) (2) (3) (4) (5)

Baseline

Observed (lower)
Consumption

Growth
Observed (higher)
Wind Generation

Observed Fuel
Prices

Observed
Consumption, Wind,

and Fuel Prices

Panel A: Generation percentage by fuel type

Coal 74 75 75 63 58
Natural gas 22 23 21 36 42

Panel B: Mean capacity factor by fuel type

Coal 0.77 0.66 0.73 0.66 0.50
Natural gas 0.29 0.23 0.25 0.46 0.42

Panel C: Mean annual operating profits by fuel type (million 2005 $ per megawatt)

Coal 0.32 0.22 0.29 0.09 0.03
Natural gas 0.08 0.05 0.07 0.09 0.05

Panel D: Retirements (gigawatts of capacity)

Coal 1.11 0.00 0.00 31.61
Natural gas 0.00 0.94 0.00 0.00
Oil 0.00 0.00 0.00 0.84

Panel E: Annual emissions (million tons)

Nitrogen oxides 2.87 1.90 2.70 2.51 1.54
Sulfur dioxide 10.68 7.14 10.10 8.97 5.46
Carbon dioxide 2516 1864 2352 2375 1661

Notes: Each column reports the results of the scenario indicated in the column heading. See text for scenario definitions.
Capacity factor and profits are capacity-weighted.

units often determine the electricity price, in many hours the electricity price falls in proportion
to the heat rate of the marginal natural gas-fired unit. Consequently, the decrease in natural
gas prices reduces equilibrium electricity prices, consistent with empirical evidence (Linn and
Muehlenbachs, 2018). Profits of coal-fired units decrease because of the lower capacity factor and
electricity price. Profits of natural gas-fired units increase only slightly because the decrease in
equilibrium electricity prices offsets the increase in capacity factors (Panel B), and because low
gas prices induce entry of gas-fired units. Because coal-fired units have higher emissions rates
than natural gas-fired units, NOx emissions decline by about 13%. The gas price shock causes
fewer retirements than the consumption shock (Panel D).

Column 5 combines the consumption, wind, and fuel price scenarios. Comparing the results
in columns 2 through 5 shows that all three shocks reduce coal capacity factors and profits. The
consumption shock has a larger effect on emissions than the fuel price shock, but the fuel price
shock has a larger effect on coal profits than the consumption shock. The three shocks combined
cause 31 GW of coal-fired capacity retirements. The fact that the individual shocks cause few
retirements but the combined shocks cause the retirements of more than 10% of the fleet implies
that it is the combination of the shocks that is so damaging to coal-fired profits.

Figure A8 provides additional context for these results by plotting the estimated density
functions for profits in the baseline, consumption, fuel price, and combined scenarios. If a unit
retires, it does not operate and its profits are zero. Individually, the consumption and fuel price
scenarios cause the distributions to shift leftward by substantial amounts. However, because coal-
fired units were quite profitable in the absence of the shocks, neither of these shocks is sufficient
by itself to cause profits to fall to zero. It is the combined effect of the shocks that causes the
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TABLE 6 Emissions Cap Scenarios

(1) (2) (3) (4) (5)

Baseline

State
Emissions

Caps

Column (2) Plus
Observed

Consumption

Column (3) Plus Observed
Wind Generation and Fuel

Prices
Column (4) Plus

MATS

Panel A: Generation percentage by fuel type

Coal 74 73 75 56 55
Natural gas 22 23 23 44 45

Panel B: Mean capacity factor by fuel type

Coal 0.77 0.77 0.66 0.48 0.47
Natural gas 0.29 0.29 0.23 0.44 0.45

Panel C: Mean annual operating profits by fuel type (million 2005 $ per megawatt)

Coal 0.32 0.33 0.21 0.03 0.04
Natural gas 0.08 0.10 0.05 0.05 0.06

Panel D: Retirements (gigawatts of capacity)

Coal 0.00 1.21 35.02 40.66
Natural gas 0.00 0.00 0.00 0.00
Oil 0.00 0.00 0.60 0.11

Panel E: Annual emissions (million tons)

Nitrogen oxides 2.87 1.77 1.51 1.22 1.23
Sulfur dioxide 10.68 10.63 7.09 5.21 5.14
Carbon dioxide 2516 2511 1862 1638 1629

Panel F: Abatement costs

Emissions price
(2005 $/ton)

3109 1483 980 1101

Annualized
costs (2005
billion $)

2.94 0.90 0.41 0.36

Notes: Each column reports the results of the scenario indicated in the column heading. See text for scenario definitions.

retirements, which is consistent with Fell and Kaffine (2018), who show that natural gas prices
and wind power interact positively with one another to reduce coal-fired generation.

� Emissions caps and MATS. Table 6 reports the simulation results for the three scenarios
that include CSAPR and the fourth scenario that includes CSAPR and MATS, with the baseline
repeated in column 1 for convenience. Column 2 includes the baseline assumptions and introduces
both summer and annual emissions caps. The caps raised the marginal cost of coal-fired generation
more than they raised the costs of natural gas-fired generation, which causes the generation share
of coal to decrease slightly. The caps do not cause any retirements. The emissions caps decrease
aggregate emissions by 38%, at an annual cost of $2.9 billion (all reported dollar numbers are in
2005 dollars).

Comparing columns 2 and 3 in Panel F shows that the consumption shock reduces the cost of
the emissions caps by almost two thirds. The consumption shock reduces eastern NOx emissions
for two reasons. First, some fossil fuel-fired plants in the East are not subject to the cap, and the
lower consumption reduces generation and emissions from the unregulated plants. Second, for
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FIGURE 8

ESTIMATED DENSITY FUNCTIONS OF PERCENTAGE CHANGE IN PROFITS OF COAL-FIRED UNITS
THAT CONTINUE OPERATING AFTER 2015, BETWEEN ALL AND BASELINE SCENARIOS
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Notes: For each coal-fired unit, the percentage change in profits between the scenario that includes all market shocks
and CSAPR caps and the baseline scenario is calculated. The figure plots the estimated density function of percentage
changes for coal-fired units that operated in 2005 and 2015, according to the CEMS data.

states that have a binding summer cap but a nonbinding annual cap, lower consumption reduces
fossil generation and emissions in nonsummer months.

Column 4 adds the wind and fuel price shocks to the scenario in column 3. In combination,
the three shocks reduce the cost of the emissions cap by 86%, to $0.4 billion per year. Comparing
columns 1, 2, and 4 suggests that the three shocks explain nearly all the reduction in coal operating
profits. Comparing column 4 in Tables 5 and 6 shows that, given the presence of the three market
shocks, CSAPR caused 3.4 GW of coal-fired plant retirements.

Recall that we model the entire eastern interconnection. Because CSAPR covers most but
not all of the eastern interconnection, the model includes some units that do not participate in
CSAPR. Table A2 shows that the three shocks affect emissions differently for CSAPR states than
for non-CSAPR states. For CSAPR states, CSAPR reduces NOx emissions by 41%. Adding the
market shocks to CSAPR further reduces emissions, but this additional reduction is smaller than
the effect of CSAPR. For non-CSAPR states, the three market shocks reduce NOx emissions by
half.

Column 5 of Table 6 adds MATS to column 4. MATS has a small incremental effect on
coal-fired plant profits and retirements. Just 20% of the total retirements in column 5 are caused
by CSAPR and MATS (i.e., comparing column 5 in Tables 5 and 6). Note that the natural gas and
coal generation shares in column 4 match observed 2015 levels for the eastern interconnection,
confirming the accuracy of the simulation model.

To provide further information about the simulation results as well as validation of the entire
model, Figure 8 illustrates the effects of the market shocks on coal-fired plant profits. For each
coal-fired plant in the baseline scenario, we compute the percentage change in profits between
the baseline scenario and the scenario that includes the three market shocks, CSAPR, and MATS.
The percentage change is –100% for units that retire in the latter scenario. We plot the estimated
density function of the percentage profit change for units that actually continue operating after
2015. For units that the model predicts will continue operating, the model correctly predicts this
decision 96% of the time. All units that the model predicts to retire by 2015 are observed to
retire (i.e., stop operating) by 2015. Note that this comparison includes only units that stopped
operating by 2015, and not units that were planned to retire after 2015.

The figure also shows that even among the units that continue operating, profits decline by at
least 70% for all units. Thus, the effects of the market shocks on profits were widespread across
the coal fleet.
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As we have noted, several of the modelling assumptions of CSAPR and MATS may cause
us to overstate compliance costs. It may appear surprising that we accurately predict retirements
despite this overestimate. The explanation is that the estimated compliance costs are about 0.6%
of the total change in profits caused by the three market shocks; that is, CSAPR and MATS
account for a negligible portion of the overall change in profitability of coal-fired plants. Because
CSAPR and MATS explain such a small share of the profits changes, even if we overestimate
CSAPR and MATS costs, we still correctly predict retirement decisions for nearly all plants. The
two regulations cause 9 GW of retirements because the market shocks push many plants close to
retirement.

6. Conclusions

� Between 2005 and 2015, NOx emissions from the US electricity sector decreased by about
8% per year, and emissions in 2015 were just two thirds what they were 10 years prior. Over the
same period, firms prepared to retire about one third of coal-fired plant capacity. The causes of
those emissions reductions have been the source of intense controversy in the public debate over
environmental regulation. One view is that market shocks have reduced emissions and coal-fired
plant profits, and that environmental regulation has reduced emissions substantially while having
a relatively small effect on coal plant profits. The other view is that environmental regulation is the
primary driver of declines in emissions and coal plant profits. Although the economics literature
suggests that market forces have reduced coal-fired generation and profits on the margin, there
is no direct evidence of the aggregate effects of market forces, or a comparison of market forces
and environmental regulation.

We use a new computational model to assess whether either view is correct. The model
covers 3500 fossil fuel-fired generation units in the eastern US electricity system and consists of
three phases: unit construction and retirement, pollution abatement, and hourly operation. The
operational phase approximates dynamic operating constraints and unit availability, as well as
transmission congestion. The model reproduces observed changes in the extensive and intensive
generation margins, fuel consumption, and emissions more accurately than a standard economic
dispatch model and matches 97% of observed retirements that occurred by 2015.

We find that market shocks have larger effects than regulation on coal-fired plant profits.
The consumption shock is about as important as the fuel price shock, both of which are more
important than the wind generation shock. Combined, the market shocks explain 82% of the
decline in NOx emissions and 99% of the decline in coal-fired plant profits. The consumption
shock explains a large share of the overall reduction in coal-fired plant profits, albeit a smaller
share than the fuel price shock. The consumption shock reduces emissions 2.5 times more than
does the fuel price shock, suggesting that both shocks played important roles in reducing NOx

compliance costs and in causing coal plant retirements. The importance of the natural gas price
shock is consistent with the empirical literature (e.g., Holladay and LaRiviere, 2017). We believe
that the literature has not previously quantified the importance of the consumption shock.

The three market shocks reduced the costs of CSAPR by 86%. Conditional on the market
shocks, CSAPR and MATS explain 20% of retirements. As we have noted in the article, we make
several simplifying assumptions about CSAPR and MATS that likely cause us to overestimate
the costs of those regulations; relaxing the assumptions would strengthen our conclusions about
the primacy of the market shocks in explaining retirements.

Appendix

The Appendix provides additional details on the model formulation and parameter estimation. We begin by defining the
set of existing units at the beginning of phase 1 (retirement and new construction), as well as a set of potential entrants.
Existing units are fossil fuel-fired units with positive generation in CEMS in the year 2005. Potential entrants include
units that actually entered the system between 2005 and 2015, and those that were being planned in 2005 but did not
actually enter. According to EIA 860, about 83 GW of new coal- and natural gas-fired capacity began operating between
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2005 and 2015, and an additional 9 GW of coal- and natural gas-fired units were either in planning or construction in
2005 but did not actually begin operating before 2015. Capital costs and fixed operations and maintenance costs for each
fuel type are from the EIA 2005 AEO. We have also attempted to estimate capital costs for new natural gas-fired units
based on entry decisions of these units, yielding estimated capital costs similar to the EIA estimates.

Most of the unit characteristics are from the EPA. For each unit, the EPA data include state, NERC region, fuel type,
rated capacity, initial year of operation, and whether the unit is connected to SCR. Fowlie (2010) analyzes several NOx

abatement technologies in addition to SCR, but most of these were widely installed at coal-fired units at the beginning of
our sample. For that reason, we exclude these technologies from our analysis, as well as selective noncatalytic reduction,
which few plants have installed.

We use EPA (2010) to estimate K a
i , which is the capital cost of SCR. EPA (2010) documents the assumptions

that are made in the agency’s electricity sector model. For emissions abatement equipment such as SCR, the EPA has
constructed a model that estimates the installation costs as a function of the unit’s generation capacity, heat rate, and other
factors. Because these factors vary across units, installation costs also vary. We annualize the capital costs assuming a
25-year lifetime of the equipment and a maximum 60-year life of the plant.

For phase 3 (hourly unit operation), we compute each unit’s emissions rates of NOx, sulfur dioxide, and carbon
dioxide by computing the generation-weighted average across hours in 2005. Using the 2005 data yields the emissions
rates at the beginning of the simulation period—that is, before subsequent abatement decisions are made. We compute an
average heat rate for each unit using fuel consumption and generation from 2005 through 2015. Using the 11 years of data
yields an average heat rate across a wide range of operating levels, accounting for the fact that heat rates tend to be higher
at very low or high levels of operation. The nonpeak hours are within six hours of the peak hour in the corresponding day.

We obtain delivered fuel prices from EIA Forms 423 and 923. To reduce measurement error and concerns about
the potential correlation among plant-level fuel prices and plant attributes that are not incorporated in the model, rather
than using plant-level prices, we use average prices by NERC region and month. The plants used to construct the prices
include publicly available data for traditionally regulated plants and proprietary data for unregulated plants (Cicala, 2015;
Linn and Muehlenbachs, 2018). Future profits are discounted at a rate of 10%.

Aggregate fossil fuel-fired generation is computed as the sum of observed generation across all fossil fuel-fired
units. Aggregate fossil generation is equal to consumer demand plus transmission line losses, net of generation from
nonfossil technologies such as nuclear (i.e., we assume that demand is perfectly price-inelastic, which is a common
assumption when modelling wholesale markets, such as by Bushnell, Chen, and Zaragoza-Watkins, 2014).

We use observed operation of each unit to estimate a minimum operating constraint. For each unit, we set the
minimum generation level equal to the fifth percentile of generation observed across all hours between 2005 and 2015
in which the unit operates with positive generation. Figure A4 plots the estimated density functions of the distributions
of minimum generation levels, separately for coal and gas units. For some units, particularly oil-fired and small gas-fired
units, this level is close to zero. For most coal units, this minimum level corresponds to 30%–50% of rated capacity,
which is consistent with assumptions made in many power system operational models in the academic literature (e.g.,
Castillo and Linn, 2011) and with assumptions used by industry.

Because we do not observe total hourly wind generation in the eastern interconnection, we estimate hourly wind
generation using Pennsylvania, New Jersey, Maryland Interconnection (PJM) and EIA data. We use the average hourly
wind generation capacity factor from the PJM market for the year 2015. The EIA 923 data include monthly wind
generation for each wind generator in the eastern interconnection. We compute the monthly capacity factor for each wind
plant using the total capacity from EIA 860.

We assume that each wind-powered plant has the same hourly variation within a month as in PJM. Using this
assumption, we scale the hourly PJM capacity factor for each wind plant to match the monthly average capacity factor
computed from the EIA data. Then, we use the wind plant’s capacity to estimate hourly generation for the entire year.
Estimated total hourly wind generation equals the cross-plant sum of estimated hourly wind generation.

� Estimation of nonfuel costs and transmission constraints. Here, we discuss two particular parameterization
challenges. First, whereas fuel costs can be estimated from observed data, nonfuel costs are not included in available data.
Most computational models of the electric power system include ad hoc assumptions about nonfuel costs. For example,
many researchers assume that nonfuel costs do not vary across units within a fuel type.

We extend the logic of Davis and Hausman (2016) to circumvent the data limitations. They argue that observed
deviations from economic dispatch are due to transmission constraints. We extend this argument by observing that nonfuel
costs and transmission congestion affect unit-level hourly generation in different ways from one another. Nonfuel costs
affect the extensive margin—whether the unit is operating—at all levels of aggregate fossil generation. In contrast,
transmission congestion affects generation at high levels of aggregate fossil generation, when the unit owner would like to
operate the unit at full capacity but cannot do so because of transmission congestion. To illustrate this distinction, consider
two particular coal-fired units in our data that are located in the same state and are similar in age, generating capacity,
and heat rate; one unit nevertheless has a capacity factor twice that of the other unit over periods of moderate aggregate
fossil generation. Because these differences in utilization rates occur at moderate aggregate fossil generation levels, they
are not likely to be explained by transmission congestion (which should be most important at high levels of aggregate
generation). Rather, differences in nonfuel costs are a likely explanation for the observed differences in utilization.24
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FIGURE A1

EASTERN INTERCONNECTION AND CSAPR [Color figure can be viewed at wileyonlinelibrary.com]

Notes: The map on the left shows the three major interconnections. The map on the right shows the states included in
the Cross State Air Pollution Rule (CSAPR). The map on the left is from the North American Reliability Council, and
the map on the right is from the Environmental Protection Agency (EPA).

TABLE A1 Changes in Unit Operation By Fuel Type, 2005–2008 versus 2009–2015

Probability of Positive Generation
Capacity Factor Conditional on Positive

Generation

2005–2008 2009–2015 Change 2005–2008 2009–2015 Change

Coal 0.85 0.73 −0.12 0.76 0.71 −0.06
Gas 0.26 0.33 0.07 0.61 0.65 0.05

Notes: The table uses data on hourly operation across all coal- and natural gas-fired units in the CEMS data (the
natural gas units include steam, combined cycle, and large turbines). The table reports the probability a unit has positive
generation and the capacity factor conditional on positive generation, across units indicated in the row headings and years
indicated in the column headings. Probabilities and capacity factors are weighted by the unit’s rated capacity.

Based on this reasoning, we estimate nonfuel costs using a simple regression. Focusing on hours in which aggregate
generation lies between the 30th and 70th percentiles, for each unit, we compute the average share of hours the unit
generates—that is, we ignore the intensive margin. During these hours, we expect transmission constraints not to bind,
in which case, if we observe a unit operating less than would be predicted by its fuel costs, we would infer that the unit
has high nonfuel costs. We omit days in which the unit does not operate to account for situations in which the unit is
unavailable because of maintenance or other reasons. Using a separate sample for each fuel type, we regress the operation
probability on the unit’s heat rate, using the estimated residual and heat rate coefficient to estimate nonfuel costs.25

Figure A3 shows the distribution of estimated nonfuel costs. The mean costs by fuel type are adjusted to match the mean
costs by fuel type in the EIA National Energy Modeling System, to ensure consistency with the fixed-cost assumptions
that are also from the EIA.26 For example, if we predict a unit’s nonfuel costs to be 50% higher than the mean of the

24 The calculation of average capacity factors excludes days when the units did not operate, because of which
differences in maintenance needs cannot explain the differences in capacity factors. Differences in supply of ancillary
services across the two units could explain the differences in capacity factors, which we account for in the cost estimation
as described in the next footnote.

25 As noted above, capacity factors could vary across units for reasons other than nonfuel costs such as the provision
of ancillary services. In that case, these services would be equivalent to having a negative nonfuel cost. We assume that
the provision of these services does not vary across policy scenarios described in Section 4.

26 The adjustments are about $4 per MWh for each fuel type. These adjustments are small compared with the fuel
costs, which tend to be several times larger—and an order of magnitude larger for natural gas. Moreover, the estimated
variation in nonfuel costs is substantially smaller than the variation in fuel costs; the coefficient of variation for nonfuel
costs is about one quarter that for fuel costs. In practice, the level and variation of nonfuel costs have little effect on the
main results: the results are similar if we simply use EIA estimates of nonfuel costs or if we do not adjust our nonfuel
costs to match the means of the EIA nonfuel costs.
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FIGURE A2

ESTIMATED EMISSIONS RATE DISTRIBUTIONS BY FUEL TYPE, 2005
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Notes: Emissions rates for each coal- and natural gas-fired unit are computed for 2005, in pounds per MWh for NOx

(Panel A) and sulfur dioxide (Panel B) and in tons per MWh for carbon dioxide (Panel C). A unit’s emissions rate equals
total annual emissions divided by total annual generation, including hours with positive emissions and generation. The
figure plots estimated density functions of the emissions rates by fuel type.

predicted costs across all units, we adjust that the unit’s nonfuel costs such that the costs are 50% higher than the EIA
costs.

The second challenge is to account for transmission congestion. We use the intensive margin to estimate the
constraints that congestion or other unit-specific factors place on the operation of a unit. Once a unit is operating, we
would expect it to operate either at its lowest available level (if marginal costs exceed the electricity price) or at its highest
possible level (if the electricity price exceeds marginal costs). Therefore, observing the unit operating at less than full
capacity, but above its minimum level, implies that the unit is facing transmission congestion or some other operating
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TABLE A2 Emissions for CSAPR and Other States

(1) (2) (3) (4) (5)

Baseline

State
Emissions

Caps

Column (2) Plus
Observed

Consumption

Column (3) Plus Observed
Wind Generation and Fuel

Prices
Column (4) Plus

MATS

Panel A: Changes in nitrogen oxides emissions (million tons)

CSAPR states 2.67 −1.10 −1.31 −1.56 −1.53
Other states 0.20 0.00 −0.05 −0.10 −0.11
Total emissions 2.87 −1.10 −1.36 −1.65 −1.64

Panel B: Changes in sulfur dioxide emissions (million tons)

CSAPR states 10.26 −0.05 −3.46 −5.22 −5.26
Other states 0.42 0.00 −0.13 −0.25 −0.29
Total emissions 10.68 −0.05 −3.59 −5.47 −5.54

Panel C: Changes in carbon dioxide emissions (million tons)

CSAPR states 2368.27 −5.59 −613.36 −835.27 −840.18
Other states 147.81 0.79 −41.05 −43.07 −46.60
Total emissions 2516.08 −4.80 −654.41 −878.34 −886.77

Notes: Column 1 reports the emissions in the baseline scenario, and columns 2–5 report comparisons between the
scenarios indicated in the column headings and the baseline scenario.

FIGURE A3

ESTIMATED DENSITY FUNCTIONS OF NONFUEL OPERATING COSTS
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Notes: Nonfuel operating costs are estimated as described in the text. The figure plots the estimated density function
of nonfuel costs (in 2005 $/MWh) by fuel type.

constraint. For example, inefficiencies may arise in dispatch because of market rules or regulation, which would cause
actual dispatch to differ from merit-order dispatch. Our reduced-form approach accounts for these factors because we use
the unit’s observed maximum generation levels, which reflect those factors, rather than assuming that units can run at full
capacity in all hours.

These constraints may vary with the overall level of aggregate fossil generation, and we compute deciles of the
aggregate fossil generation distribution. For each decile and unit, we determine the 95th percentile of generation during
hours that fall within the decile. This calculation determines gih , which is the maximum generation level by unit and hour.
As in Davis and Hausman (2016), we assume that the counterfactuals we consider in Section 5 do not affect gih .27

27 Firms may choose not to operate at full capacity during certain hours if they desire to maintain some capacity
for reserve markets. Therefore, the estimated hourly maximum capacity factors may reflect this consideration as well as
transmission constraints. Implicitly, we assume that the scenarios modelled in Section 5 do not affect the amount and
source of capacity that is withheld for reserves.
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FIGURE A4

ESTIMATED DENSITY FUNCTIONS OF MINIMUM CAPACITY FACTOR FOR COAL- AND GAS-FIRED
UNITS
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Notes: Minumum capacity factor is the ratio of the unit’s minimum generation level to its rated capacity. The figure
plots the estimated density functions of minimum capacity factor for coal- and gas-fired units.
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FIGURE A5

SIMULATED VERSUS OBSERVED ANNUAL UNIT GENERATION BY NERC REGION, 2005 (MILLION
MWH) [Color figure can be viewed at wileyonlinelibrary.com]
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Notes: The figure plots the simulated against observed generation using the same results as in Panel F of Figure 8
(2015, unit commitment model). Each panel includes units in the indicated NERC region.
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FIGURE A6

SIMULATED VERSUS OBSERVED ANNUAL UNIT GENERATION BY NERC REGION, 2015 (MILLION
MWH) [Color figure can be viewed at wileyonlinelibrary.com]
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Notes: The figure plots the simulated against observed generation using the same results as in Panel F of Figure 8
(2015, unit commitment model). Each panel includes units in the indicated NERC region.
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FIGURE A7

SIMULATED VERSUS OBSERVED ANNUAL UNIT GENERATION BY FUEL TYPE, 2015 (MILLION MWH)
[Color figure can be viewed at wileyonlinelibrary.com]
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Notes: The dispatch and commitment simulations are the same as those shown in panels E and F of Figure 8. The
panels in this figure show simulation results for the indicated fuel type

FIGURE A8

ESTIMATED DENSITY FUNCTIONS OF PROFITS OF COAL-FIRED UNITS

Notes: The figure plots the estimated density function of profits per megawatt of capacity from the indicated scenarios.
Zero profits indicates that the unit is retired.
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